6ES7222-1BD22-0XA0技术支持
对象:
① 三菱PLC:FX2N + FX2N-485-BD
② 三菱变频器:A500系列、E500系列、F500系列、F700系列、S500系列
两者之间通过网线连接(网线的RJ45插头和变频器的PU插座接),使用两对导线连接,即将变频器的SDA与PLC通讯板(FX2N-485-BD)的RDA接,变频器的SDB与PLC通讯板(FX2N-485-BD)的RDB接,变频器的RDA与PLC通讯板(FX2N-485-BD)的SDA接,变频器的RDB与PLC通讯板(FX2N-485-BD)的SDB接,变频器的SG与PLC通讯板(FX2N-485-BD)的SG接。
A500、F500、F700系列变频器PU端口:
E500、S500系列变频器PU端口:
一.三菱变频器的设置
PLC和变频器之间进行通讯,通讯规格必须在变频器的初始化中设定,如果没有进行初始设定或有一个错误的设定,数据将不能进行传输。
注:每次参数初始化设定完以后,需要复位变频器。如果改变与通讯相关的参数后,变频器没有复位,通讯将不能进行。
对于122号参数一定要设成9999,否则当通讯结束以后且通讯校验互锁时间到时变频器会产生报警并且停止(E.PUE)。
对于79号参数要设成1,即PU操作模式。
注:以上的参数设置适用于A500、E500、F500、F700系列变频器。
当在F500、F700系列变频器上要设定上述通讯参数,要将Pr.160设成0。
对于S500系列变频器(带R)的相关参数设置如下:
对于79号参数设成0即可。
注:当在S500系列变频器上要设定上述通讯参数,要将Pr.30设成1。
二.三菱PLC的设置
三菱FX系列PLC在进行计算机链接(专用协议)和无协议通讯(RS指令)时均需对通讯格式(D8120)进行设定。其中包含有波特率、数据长度、奇偶校验、停止位和协议格式等。在修改了D8120的设置后,确保关掉PLC的电源,再打开。
在这里对D8120设置如下:
RS485
b15 b0
0000 1100 1000 1110
0 C 8 E
即数据长度为7位,偶校验,2位停止位,波特率为9600bps,无标题符和终结符,没有添加和校验码,采用无协议通讯(RS485)。
有关利用三菱变频器协议与变频器进行通讯的PLC程序如下:
说实话,好几年没用过PLC了;今看到一个以前的试验程序,看起来蛮“拗口”的,参见附图1。程序原用GX Developer编制,FX2N;现移植为用台达WPLSoft 2.12编制,ES2。
该段程序的要求是:实现Y1~Y5的顺序移位,并可任意取消某位或某几位;也就是,若取消Y2,则Y1接通之后,满足条件后Y1断开、Y3接通,而不是Y2接通。
这可能是,当时为编制某程序而作的准备,应当是程序中要求有类似的功能(原程序未保留)。比如,五个加工工位,每次仅允许一个加工,若某工位未准备好,则跳过该工位。
该程序的方法,似不太顺畅——要实现该功能,还可以如何编制程序呢?
此主题相关图片如下,点击图片看大图:
重新阅读该段程序后,得出其编程思路是:若取消某位,则移位到该位为1时,再使之移一位。
为便于描述,用梯形图左母线旁的步序号为“行号”(行块号)。
附,对附图1程序的解读:
0行:接通一次X0,T0延时1秒接通,X0信号抖动,也不会多次给出信号;这是防外部触点抖动的另一种思路。T0接通一次,M31~M36左移一位。
8行:给出移位的初始信号M10。
10行:当M31接通后,复位复位M10。
14行:移位指令,实现M31~M36的每次一位移位;此处M1无作用。
25行:下一个循环时,使M31置位,即M31与M36接通。
27行:复位M31,此时M32已接通,仍是实现M31与M36接通。
33~53行:产生D10的移位信号。
58行:D10赋初值。
64行:实现D10的移位。
75~114行:若取消某位,则该位被移除。
比如,取消Y2(使Y1接通直接转到Y3接通),则这时使X2接通;
设先有Y1接通(M31等接通),此时来一个移位信号后,有M32接通,执行38行、产生M62信号(M62脉冲接通),于64行D10移一位;这时D10的各位为 0000 0000 0000 0100;
由于M62接通、又X2接通,故执行到88行时,D10再移一位,结果为 0000 0000 0000 1000;执行后续程序,使M93接通,Y3接通。
127行:若为取消第5位,则将D10赋初值。
138行:当D10移位至b6位以上接通时,则D10赋初值。
148行:将D10的值,送至K2M90(M90~M105),以达控制目的。
154~166行:实现Y1~Y5的控制目的。
169行:程序结束。
该程序仅是给出一种思路,不是实用程序;程序移植后(并将138行与127行指令位置作了交换),也未进行试验。
比如,粗看起来,当取消某位,D10进行“额外”的移位后,则M31~M36并没有进行相应的移位;可能的方法,是将D10的内容,再返回到M31~M36。
一、问题的提出:
因三菱PLC在小型PLC市场进入早,规模大,很多厂家小型设备都是三菱PLC进行控制的,通常一个车间有同类设备数十台,如硫化机,卷染机,拉丝机,弯管机等均有此特点。质量管理及工艺分析逐步要求获取现场数据,为此底层设备信息上传的要求也越来越强烈。
科威PLC在规划之初就立足于底层设备信息化的工作,在PLC上加载了FX2N的主站协议,一台科威PLC可以监视32台FX2N;科威PLC还加载了CAN应用层协议,科威PLC之间支持高速CAN通信,对原有三菱PLC群可实施高效监控。
二、监控网络构成与设置
对一组(小于32台)FX2N的监视
说明:
1.科威PLC与FX2N的通信
科威PLC在运行时,串口1自动加载三菱FX2N计算机链接方式格式1的主从站协议,在上图中,将科威PLC设成RS485主站,可对从站FX2N的数据寄存器D7000-D7989进行读写操作.在主站上可以监视各从站的在线情况及正确回文的数量。
通讯格式:数据长度8位,停止位1位,偶校验位,传输速率9600 bps。
主从站数据流向图示意如下:
科威PLC作为通信的主站设置和报文控制程序均由梯形图编写(参见科威PLC编程手册第十章);原FX2N作为从站只需进行以下编程即可:
D8121根据不同的从站编号填写不同的地址,地址范围:K1---------K31。
2.科威PLC编程口与PC机的通信
科威PLC编程口兼容FX2N的通信协议,国内外多数组态软件和人机界面均预以支持。编程口协议通常是向组态软件厂商,与编程口连线,建议采用组态软件,如国产组态王,Fameview,MCGS等。
l 对多组(每组小于32台)FX2N的监视
假如说,对一个FX2N群组进行监控相当于一个车间,那么对多个车间进行监控就是多组监视要解决的问题。每组内连接与上面图示相似,多组互连如下所示:
说明:
1. 车间级PLC与FX2N群和PC机连接同“一组FX2N的监视”。
2. 车间级科威PLC互连。
各车间级PLC作为CAN总线的从站,用梯形图进行从站及地址设置。
D6999=HC000,设置为从站;
D6998=K1,从站地址为1;=K2,从站地址为2;以此类推,建议小于K32。
各从站需得到的信息从D6000-D6002;D6006-D6008;……;取得。
各从站需要发出的信息送到D6003-D6005;D6009-D6011;……;
每个从站都如此,从站只与主站的通信;各从站之间信息交流通过主站中转。
3.CAN主站PLC
经理办的科威PLC为CAN总线的主站,它主动向各从站发出数据交换命令,CAN通信数据交换是按设置好的CAN网络自动进行数据交换,无需编程。CAN网络由CANSet.exe进行设置。
如图所示,表示主站数据D000-D0014发送到地址=1的从站,并从从站获取数据送到主站D0030-D0035;根据需要配置主站与各从站的信息对应关系。
由CANSet.exe生成的配置文件下载到主站PLC,CAN网络按设置表的要求自动进行数据交换。
我个人认为,CAN通信是科威PLC具竞争力的部分,台湾正频企业的伺服与我公司PLC顺利互连,《科威PLC论坛》展示了双方互连的全过程。
科威PLC与更多的CAN设备互连工作都在进行!
4、主站PLC与PC机
主站PLC与PC机可从PLC编程口连接,也可从RS485口连接。从编程口连接可直接使用组态软件,从RS485口连接既可用组态软件,也可用VB,VC编程,按RS485的计算机链接协议即可。
信息化带动工业化,真正信息化必须是底层设备具备信息互通的能力,科威PLC是迎着信息化的春天而诞生的