6ES7221-1EF22-0XA0技术支持
监控时跳出,请问如何解决
由于PLC正在上载/下载,处于致命错误状态或缺失硬件而无法处理此命令。如果在版本为Rel 2.x.x的CPU上使用一个32K的存储卡,请确保数据保持设置区域、强制值、数据库和用户程序大小都处于版本为Rel 1.x.x的CPU所支持范围之内”。
答:1、问题出在 你这是新版本的CPU和老版本的卡,不兼容。 新版本的CPU只能从老卡中读,不能写,你会看到那条报错。 64K或256K的卡才能和新版本的CPU兼容。
2、在此介绍一下有关存储卡的特性:
有关存储卡:
、32K存储卡:仅用于储存和传递程序、数据块和强制值 。
、64K/256K存储卡:可用于新版CPU(23版)保存程序、数据块和强制值、配方、数据记录和其他文件(如项目文件、图片等) 存储卡的内容一旦写入不会丢失。
、 64K/256K新存储卡只能用于新版CPU(23版);32K存储卡只可以用于向新版(23版)CPU传递程序,不支持64K/256K存储卡的新功能;新版CPU不能向32K存储卡中写入任何数据。
、CPU进入上电状态时,若存储卡是空白的或者存储的是不同类型CPU的程序,会导致错误。高型号的CPU可以读出用低型号CPU写入的存储卡,则不行。
3、一个典型的问题:
、使用 23 版本的新存储卡向 S7-200 CN 中复制程序为何会发生 SF(系统故障)错误?
23 版的存储卡与 S7-200 CN CPU 完全兼容,既可以用在 23 版以上的 SIMATIC S7-200 上,也可以用在 S7-200 CN 上。
为了限制中国以外的用户使用 S7-200 CN CPU,通过存储卡从 SIMATIC CPU 到 CN CPU 的程序转移被限制,即它们之间不能通过存储卡传送程序。
要通过存储卡向 CN CPU 传送程序,存储卡必须在 CN CPU 上编程。
要清除 SF 错误,可以使用菜单命令“PLC > 存储卡擦除”,执行“PLC > 上电复位”
图1为PLC接线图,图2为控制梯形图。图3描述了每个扫描周期程序的执行过程。按钮SB2在程序中没有使用,但其状态仍影响其对应编号的内部输入继电器的状态。图(a)中,①输入扫描过程,将两个按钮的状态扫描后,存入其映像区,由于SB2是停止按钮,没有按下,其输入回路也是闭合的,X1存“1”(ON状态),而其它位存“0”(OFF状态)。②执行程序过程,程序根据所用到触点的编号对应的内部继电器状态来运算。由于X0处于OFF状态,对应的动合触点处于断开状态,运算结果是Y0、Y1处于OFF状态,其结果存入输出映像区,即Y0、Y1存“0”。③输出刷新过程,根据映像区各位的状态驱动输出设备,由于输出映像区均为OFF状态,输出指示灯不能形成闭合回路,灯不亮。如果输入不发生变化,内部继电器的状态均不发生变化。图(b)中,按下SB1按钮后,X0输入回路闭合。①输入扫描将输入状态存入其映像区,X0、X1均存“1”。②执行程序过程,按照从左到右,从上到下的原则,逐条执行。行,X0触点闭合,但此时,Y1的状态为“0”,Y1触点为断开状态,Y0没能导通,其状态为“0”。第二行,X0触点闭合,Y1的状态为“1”。③输出刷新过程,由于Y1呈导通状态,灯2亮。
图(c)为按下SB1按钮后的第二个扫描周期。①输入扫描,由于输入状态不变,输入映像区不变。②执行程序过程,行,X0触点闭合,由于上一个周期中,Y1为ON状态,Y1触点也闭合,Y0也呈导通状态;第二行,Y1还呈导通状态。Y0、Y1的状态均为“1”。③输出刷新过程,两个灯都亮。注意:由于PLC的扫描周期很短,我们用肉眼见到的现象可能是两灯亮。如果按钮没有变化,内部继电器、输出设备状态均无变化。
图( d)为松开SB1按钮后的个扫描周期。①输入扫描使输入映像区的X0存“0”、 X1存“1”。②执行程序过程,X0触点断开,Y1由于上个周期被置“1”,Y1触点为闭合状态。③输出刷新过程,由于X0触点的断开,Y0 、Y1都呈断开状态。
1 引言
在工业生产中,常需要用闭环控制方式来实现温度、压力、流量等连续变化的模拟量控制。无论使用模拟控制器的模拟控制系统,还是使用计算机(包括PLC)的数字控制系统,PID控制都得到了广泛的应用。
PID控制器是比例-积分-微分控制的简称,具有
(1) 不需要jingque的控制系统数学模型;
(2) 有较强的灵活性和适应性;
(3)结构典型、程序设计简单,工程上易于实现,参数调整方便等优点。积分控制可以消除系统的静差,微分控制可以改善系统的动态相应速度,比例、积分、微分三者有效地结合可以满足不同的控制要求。
2 PLC实现PID的控制方式
2.1 PID过程控制模块
这种模块的PID控制程序是PLC生产厂家设计的,并存放在模块中,用户使用时序要设置一些参数,使用起来非常方便,一个模块可以控制几路甚至几十路闭环回路。
2.2 PID功能指令
现在很多PLC都有供PID控制用的功能指令,如S7-200的PID指令。它们实际上是用于PID控制的子程序,与模拟量输入/输出模块一起使用,可以得到类似于使用PID过程控制模块的效果。
2.3 用自编的程序实现PID闭环控制
有的PLC没有PID过程控制模块和PID控制用的功能指令,有时可以使用PID控制指令,希望采用某种改进的PID控制算法。在上述情况下都需要用户自己编制PID控制程序。
3 PLC-PID控制器的实现
本文以西门子S7-200PLC为例,说明PID控制的原理及PLC的PID功能指令的使用及控制功能的实现。
3.1 PID控制器的数字化
PLC的PID控制器的设计是以连续系统的PID控制规律为基础,将其数字化写成离散形式的PID控制方程,再跟据离散方程进行控制程序设计。
在连续系统中,典型的PID闭环控制系统如图1所示。图1中sp(t)是给定值,pv(t)是反馈量,c(t)是系统的输出量,PID控制的输入输出关系式为:
式中:
M(t)—控制器的输出量,M0为输出的初始值;
e(t)=sp(t)-pv(t)-误差信号;
KC比例系数;
TI-积分时间常数;
TD-微分时间常数。
图1 连续闭环控制系统方框图
式(1)的右边前3项分别是比例、积分、微分部分,它们分别与误差,误差的积分和微分成正比。如果取其中的一项或两项,可以组成P、PD或PI控制器。
假设采样周期为TS,系统开始运行的时刻为t=0,用矩形积分来近似jingque积分,用差分近似jingque微分,将公式1离散化,第n次采样时控制器的输出为: (2)
式中:
en-1-第n-1次采样时的误差值;
KI-积分系数;
KD-微分系数。
基于PLC的闭环控制系统如图2所示。图中的虚线部分在PLC内。其中spn、pvn、en、Mn分别为模拟量在sp(t)、pv(t)、e(t)、M(t)在第n次采样时的数字量。
图2 PLC闭环控制系统方框图
在许多控制系统内,可能只需要P、I、D中的一种或两种控制类型。如可能只要求比例控制或比例与积分控制,通过设置参数可对回路进行控制类型进行选择。
3.2 输入输出变量的转换
PID控制有两个输入量:给定值(sp)和过程变量(pv)。多数工艺要求给定值是固定的值,如加热炉温度的给定值。过程变量是经A/D转换和计算后得到的被控量的实测值,如加热炉温度的测量值。给定值与过程变量都是与被控对象有关的值,对于不同的系统,它们的大小、范围与工程单位有很大的区别。应用PLC的PID指令对这些量进行运算之前,必须将其转换成标准化的浮点数(实数)。
同样,对于PID指令的输出,在将其送给D/A转化器之前,也需进行转换。
3.3 回路输入的转换
转换的步是将给定值或A/D转换后得到的整数值由16位整数转换成浮点数,可用下面的程序实现这种转换:
XORD AC0, ACO
//清除累加器
MOVW AIWO, AC0
//将待转化的模拟量存入累加器
LDW>= AC0, 0
//如果模拟量数值为正
JMP 0
//直接转换成实数
ORD 16#FFFF0000, ACO
//将AC0内的数值进行符号扩展,扩展为32位负数
LBL 0
DTR AC0, AC0
//将32位整数转换成实数
转换的下一步是将实数转换成0.0~1.0之间的标准化实数,可用下面的式(3)对给定值及过程变量进行标准化:
RNorm=(RRaw/Span)+Offset (3)
式中:
RNorm-标准化实数值;
RRaw-标准化前的值;
Offset-偏移量,对单极性变量为0.0,对双极性变量为0.5;
Span-取值范围,等于变量的大值减去小值,单极性变量的典型值为32000,双极性变量的典型值为64000。
下面的程序将上述转换后得到的AC0中的双极性实数(其Span=64000)转换成0.0~1.0之间的实数:
/R 64000.0, AC0
//累加器中的实数标准化
+R 0.5, AC0
//加上偏移值,使其在0.0~1.0之间
MOVR ACO, VD100
//加标准化后的值存入回路表内
3.4 回路输出的转换
回路输出即PID控制器输出,它是标准化的0.0~1.0之间的实数。将回路输出送给D/A转换器之前,必须转换成16位二进制整数。这一过程是将pv与sp转换成标准化数值的逆过程。用下面的公式将回路输出转换成实数:
RScal=(Mn-Offset)×Span (4)
式中,RScal是回路输出对应的实数值,Mn是回路输出标准化的实数值。
下面的程序用来将回路输出转换为对应的实数:
MOVR VD108, AC0
//将回路输出送入累加器
-R 0.5, AC0
//仅双极性数才有此语句
*R 64000.0, AC0
//单极性变量乘以32000.0
用下面的指令将代表回路输出的实数转换成16位整数:
ROUND AC0, AC0
//将实数转换为32位整数
MOVW AC0, AQW0
//将16位整数写入模拟输出(D/A)寄存器
3.5 PID指令及回路表
S7-200的PID指令如图3所示:
图3 PID指令
指令中TBL是回路表的起始地址,LOOP是回路的编号。编译时如果指令指定的回路表起始地址或回路号超出范围,CPU将生成编译错误(范围错误)仪器编译失败。PID指令对回路表中的某些输入值不进行范围检查,应保证过程变量、给定值等不超限。回路表参见附表。
附表 PID指令的回路表
如果PID指令中的算术运算发生错误,特殊存储器SMI.1(溢出或非法数值)被置1,并将终止PID指令的执行。要想消除错误,在下次执行PID运算之前,应改变引起运算错误的输入值,而不是更新输出值。
4 PID指令编程举例
某一水箱里的水以变化速度流出,一台变频器驱动的水泵给水箱打水,以保持水箱的水位维持在满水位的75%。过程变量由浮在水面上的水位测量仪提供,PID控制器的输出值作为变频器的速度给定值。过程变量与回路输出均为单极性模拟量,取值范围为0.0~1.0。
本例采用PI控制器,给定值为0.75,选取控制器参数的初始值为:KC=0.25,TS=0.1s,TI=30min。编程如下:
//主程序(OBI)
LD SM0.1 //扫描时
CALL 0 //调用初始化子程序
//子程序
LD SM0.0
MOVR 0.75, VD104 //装入给定值75%
MOVR 0.25, VD112 //装入回路增益0.25
MOVR 0.10, VD116 //装入采样时间0.1s
MOVR 30.0 VD120 //装入积分时间30min
MOVR 0.0, VD124 //关闭微分作用
MOVB 100, SMB34
//设置定时中断0的时间间隔为100ms
ATCH 0, 10
//设定定时中断以执行PID指令
ENI
//允许中断,子程序0结束
//中断程序0
LD SM0.0
LTD AIW0, AC0
//单极性模拟量经A/D转换后存入累加器
DTR AC0, AC0
//32位整数转换为实数
/R 32000.0, AC0
//标准化累加器中的实数
MOVR AC0, VD100 //存入回路表
LD 10.0
//在自动方式下,执行PID指令
PID VB100, 0
//回路表的起始地址为VB100,回路号为0
LD SM0.0
MOVB VD108, AC0
//PID控制器的输出值送入累加器
*R 32000.0 AC0
//将累加器中的数值标准化
ROUND AC0, AC0
//实数转换为32位整数
DTI AC0, AQW0
//将16位整数写入到模拟量输出(D/A)寄存器
5 结束语
PLC实现PID控制的方法多种,直接应用PID指令来实现基于PLC的PID控制,是一种易于实现且经济实用的方法