西门子模块6ES7223-1BM22-0XA8型号大全
1引言
在大型机械加工行业尤其是汽车行业中往往用到较多的能源站房及其他站房,如制冷站、循环水站、热交换站、空压站、以及污水处理站等。他们就像人体的心脏、肾脏等重要器官,在工厂的能源(压缩空气、热水、高温蒸气等)供应、循环、回收等过程中起着极为重要的作用。对上述站房系统的监测管理及控制也就成为工厂自动化(FA)的重要组成部分,通过对这些站房实现自动监测控制,可以起到大量节约资源,节省人工的作用。对上述站房的自动监控,也将越来越广泛地得到应用。
本文主要介绍制冷站、热交换站、循环水站的分布式监控系统。
2综合站房工艺流程
综合站房工艺流程示意图如图1所示。
图1综合站房工艺流程框图
点击此处查看全部新闻图片
本站房主要完成给用户提供冷源、热源的功能,主要用于剧院、医院、大型办公场所、恒温厂房的中央空调系统等。
(1)冷冻水监控系统
本系统以
制冷机的监控为主,制冷机为大连三洋蒸汽式溴冷机,该机自带PLC和RC-232串口,经转换成RS485口后可方便地与上位机通信,从而很方便地获得制冷机的运行参数。根据冷冻水给、回水温度差及总liuliang判断用户冷负荷状况,确定冷冻机开启台数及阀门大小,保证冷源的合理使用,达到佳的节能及运行效果。
(2)冷却水监控系统
冷却水系统通过冷却塔和冷却水泵向制冷机提供冷却水,保证制冷机有足够的冷却水通过,并根据气候及冷负荷调整冷却水运行工况,在冷却水温和水量满足要求的情况,使系统合理运行。
(3)采暖监控系统
采暖系统通过热交换器为中央空调提供热水,监控系统的主要任务为控制热交换过程以保证要求的热水温度和liuliang。根据热水给、回水温度差及总liuliang判断用户热负荷状况,确定热交换器开启台数及阀门大小,保证热源的合理使用,达到佳的节能及运行效果。
(4)循环供水监控系统
因为采暖和制冷不可能
2.1链接系统的通讯协议
在纱线数据通讯中,只需要在上位机系统中编写上位机通讯程序,无需在PLC中编写任何程序,PLCCPU会根据上位机发来的命令帧自动生成响应帧返回给上位机。命令帧和响应帧之间包含需要通讯的数据,只有保证正确实现命令帧和响应帧之间的应答,才能实现准确的数据交换。命令和应答有两种方式,一种是从上位机发命令到PLC,另一种方式允许PLC发命令给上位机,我们采用浅一种方式。
从上位机发送命令时的命令帧和响应帧如图3。
图3命令帧和响应帧格式
点击此处查看全部新闻图片
命令帧中:
@——命令开始标志,所有命令都以“@”开始;
节点号——与上位机连接的PLC,在1:1连接中默认值为00;
标题码——设置两字节的命令代码,如RD代表读PLC的DM区数据;
正文——设置命令参数
FCS——设置两字符的帧检查顺序码,用于校验,是用两位ASCII码表示的8位数据,是从“@”开始到正文结束的所有字符的ASCII码按位异或运算的结果;
结束符——表示命令的结束,用“*”和回车符“CHR$(13)”标明。
应答帧中:
@、节点号、标题码、FCS和结束符同命令帧中的含义。
异常号——返回命令的执行状态,,是否有错误发生。
2.2通讯端口初始化
在上位机与PLC实现通讯之前,必须先在上位机VB中设置通讯控件MSComm1的相应属性,通讯口初始化程序一般放在窗体加载程序中。
PrivateSubbbbb_Load()
MSComm1.CommPort=1‘设置Com1通讯口
MSComm1.Settings=“9600,e,7,2”‘波特率9600,e偶校验,7位数据位,2位停止位
MSComm1.PortOpen=True‘打开通讯端口
MSComm1.InBufferCount=0‘清空接收缓冲区
EndSub
其它设置均取通讯控件MSComm1的默认值。
2.3帧格式代码
采用基于bbbbbbs操作系统功能强大的面向对象的程序设计语言——VisualBasic,编写了上位机程序,建立了上位机与PLC之间良好的通讯协议。以读内存DM区为例:
上位机命令帧:
"@"+"00"+"FA"+"1"+"00000000"+"0101"+"82"+开始地址+读取个数+FCS+结束符
PLC应答帧:
"@"+"00"+"FA"+"1"+"00000000"+"0101"+"82"+"0000"+读取数据+FCS+结束符
其中:
FA——表示FINS命令
0101——表示连续读内存区
82——表示读内存DM区
2.4校验算法实现
为了保证通讯数据准确无误的传输,欧姆龙PLC对通讯数据以按位异或算法进行校验。代码如下,仅供参考。
OptionExplicit
FunctionFCS(ByValtemp1Asbbbbbb)Asbbbbbb
Dimslen1,i,xorresult1AsInteger‘定义变量
Dimtempfcs1Asbbbbbb
xorresult1=0
slen1=Len(temp1)‘求输入字符串的长度
Fori=1Toslen1
xorresult1=xorresult1XorAsc(Mid(temp1,i,1))‘从首字符到尾字符获取ASCII码,按位异或
Nexti
Tempfcs1=Hex$(xorresult1)‘转换为16进制
IfLen(tempfcs1)=1Then
FCS="0"&tempfcs1
Else
FCS=tempfcs1
EndIf
EndFunction
3.结束语
本文作者创新点主要通过RS-232C串口通讯,采用面向对象的可视化编程工具——VisualBasic建立上位机与欧姆龙PLC-CJ1M(CPU21)之间的数据通讯,获取纱线在线检测数据,现场实测表明能够快速准确在线测量纱线的CV值、瞬时直径、平均直径、粗节大值、细节小值等等,实时反映纱线的不匀率,对tigao棉纺企业纱线质量具有重要的意义。
0.引言
1969年美国数字设备公司根据美国通用汽车公司的要求,研制出世界上台可编程序控制器。初只能用于逻辑运算,故称为可编程逻辑控制器,简称为PLC(ProgrammableLogicController),随着计算机技术和电子技术的飞速发展,其功能远远超出顺序控制和逻辑控制的范畴,不仅实现了数据运算和处理能力,体积小,功能强,可靠性高,编程直观,适应性好,接口方便,。
近年来,随着现代化生产技术的tigao,以及计算机技术、信息技术和通讯技术的相互渗透,纱线的不匀直接导致布面的不平整,这就说明在纱线生产环节极为重要。纱线不匀是影响其品质的重要指标之一。传统的纱线检测方式都是在实验室离线进行的,通过对纱线的抽样,要求一定的温湿度前提下,相对于纱线的在线检测反映出离线检测的滞后性和随机性。RS-232C串行通讯实现比较容易,常被用于自动控制、数据采集、智能仪表等上位机与外部设备的数据通讯。本文设计了VB与欧姆龙PLC-CJ1M(CPU21)之间的数据通信,在线获得纱线的检测数据,如CV值、纱线瞬时直径、平均直径、粗节大值、细节小值等等,及时反映纱线的不匀,使操作人员及时做出相应调整。
1.上位机与PLC之间通讯实现
欧姆龙PLC—CJ1M(CPU21)有两个串行通讯口,一是通过欧姆龙专用串口通讯线CS1W-CN226,其网络类型设置为Toolbus,将DIP4串行通讯设状态置为ON;一是通过欧姆龙九针串口通讯线XM2Z-200S-CV,其网络类型设置为SYSMACWAY,其它为默认设置,包括端口为COM1,波特率为9600。图1所示为上位机通过RS-232C端口连接到PLC的示意图,也可以称作1:1连接。
图1RS-232C端口的1:1连接
点击此处查看全部新闻图片
图2所示为上位机与PLC之间通讯实现过程。
图2上位机与PLC之间通讯实现过程
点击此处查看全部新闻图片
2.VB与PLC之间通讯协议和程序实现
1 引言
热风炉是给高炉提供热风的炼铁设备。在燃烧期,热风炉燃烧高炉煤气,产生的废气流经蓄热室,使蓄热室的格子砖蓄热。在送风期,冷风反向流经蓄热室被加热后送往高炉,为高炉提供连续的、适宜温度的热风,以tigao冶炼强度,降低焦比,达到高炉节能降耗的目的。由于种种原因,相当多的热风炉控制落后,运行状况并不令人满意,有的甚至是手动控制。操作者通常依据个人经验手动调节煤气量和空气量以控制热风炉拱顶温度和废气温度,通入其中的空气和燃气很难恰到好处。由于控制不当,送风温度一直偏低,造成资源的严重浪费,影响高炉的冶炼。热风炉采用自动控制,可以降低操作人员的劳动强度,确保系统安全稳定运行,在一定的程度上起到了降低能耗,tigao风温的作用。
2热风炉的工艺概述[2]
热风炉有燃烧、焖炉、送风三种状态,按燃烧、送风的周期循环工作。其过程为:热风阀、冷风阀关闭,烟道阀和助燃空气、煤气切断阀,调节阀打开时为燃烧状态。此时助燃空气和煤气按空燃比混合,在热风炉顶部燃烧,高温烟气从上向下经过球床体,将热量存储在热风炉内。当拱顶和烟道温度达到设定值,蓄热室储存足够热量,关闭煤气、助燃空气的调节阀、切断阀,关闭烟道阀,热风炉处于焖炉状态,等待送风。需要热风炉送风时,先打开冷风均压阀使冷风阀两端的差压减小,再打开冷风阀和热风阀,关闭冷风均压阀,热风炉处于送风状态。此时,冷风从下向上经过热风炉球床体,被加热成温度略低于拱顶的热风,将储存于热风炉内的热量送往高炉。随着送风时间的延长,风温逐渐下降,热风炉再转入燃烧状态,循环工作。
新1#高炉配备3座热风炉,设置有“两烧一送”、“一烧两送”(正常工作)、“一烧一送”(非正常)三种送风制度,由操作人员根据高炉送风需要选取。3座热风炉根据送风制度,遵循拱顶和烟道温度先达到设定值的热风炉先送风的优选原则,交替燃烧、送风,向高炉连续供风。除高炉休风外,系统中应至少有1座热风炉处于送风状态。
3系统设计[1]
3.1系统结构设计
系统结构分工程师/操作员站、plc控制站2级,网络分上层管理网、下层控制网2层,见图1。上层管理网连接plc控制站和操作员/工程师站,符合tcp/ip协议,通信速率100mb/s,介质为双绞线。plc控制站通过140noe 77101以太网适配器与路由器连接,操作员/工程师站为工控机,通过网卡与路由器连接。plc控制站由四个机架组成,其中机架1为主站,其余3个机架为分站。主站和分站之间通过rio处理器接口,rio分支器以及f接头进行连接。采用该网络结构模式具有安装灵活、的特点。工程师/操作员站使用schneider编程软件concept和ifix监控软件完成plc的控制逻辑和人机界面的组态。热风炉控制系统配备2台操作员站,互为备用,接收plc控制站的实时数据,显示热风炉生产过程的流程图、设备运行状况和过程参数值;提供过程量设定值和控制参数的设定、修改画面;显示实时/历史趋势并形成历史数据库;显示设备故障和控制系统自身故障的报警画面;实现报表的生成和打印。系统配备了脱离自动控制系统的操作台,并将关键的工艺参数用二次仪表加以显示,以便在控制系统的非正常状态时进行手动操作,避免控制系统故障带来的损失。
图1系统结构图
3.2系统控制功能设计[1][3]
热风炉主要是为高炉提供稳定高温的热风,主要检测项目有拱顶温度、废气温度、换热器助燃风出/入口温度、换热器废气入/出口温度、煤气和助燃风压力、liuliang、冷却水压力、liuliang等。控测信号进入plc后进行线性化计算,气体liuliang温度与压力补正,并在操作员/工程师站上显示所有数据。
(1)顺序控制。plc控制站检测各热风炉的阀门位置和拱顶温度等参数,分析热风炉状态,根据送风制度和送风优选原则,向热风炉发出送风、焖炉、燃烧的指令,使阀门按规定的顺序和连锁要求动作,完成热风炉的状态转换和热风炉之间的送风切换,实现向高炉连续送风的目的。实现系统的安全保护,保证热风炉安全生产。
(2)模拟量调节。模拟量的调节包括混风调节、煤气总管压力调节、助燃空气总管压力调节和燃烧控制。热风温度是热风炉的重要参数,直接影响高炉炉况。助燃空气和高炉煤气压力保持稳定是保证热风炉燃烧稳定的必要条件。这三个回路均采用单回路调节,由concept软件的连续控制pid功能块实现,该功能块输出与连续信号对应的计算结果,转化为4-20ma的标准信号,作为调节阀的输入,控制过程参数,达到了满意的控制效果。由于热风炉是具有非线性、大滞后等特性的复杂被控对象,而其燃料(高炉煤气)受高炉炉况等因素的影响,热值和压力经常波动,为燃烧的完全自动控制带来了很大困难。经过长期的实践和摸索,将燃烧分为快速燃烧期、蓄热期和焖炉期三个阶段,采用固定煤气量调节空气量的方案烧炉。
3.3项目效果分析
新1#高炉的热风炉自动燃烧的控制包括高炉煤气liuliang调节回路,助燃空气liuliang调节回路和拱顶温度调节回路。煤气量和空燃比由操作人员设定,煤气量的大小关系到拱顶的升温速度。在快速燃烧期,助燃空气量根据煤气量和空燃比自动配给,较小的助燃空气量促使拱顶温度尽快升高。拱顶温度达到设定值后进入蓄热期,由助燃空气调节回路和拱顶温度调节回路经过高选器控制助燃空气调节阀。拱顶温度超过设定值时,拱顶温度调节回路输出快速增大,当其超过助燃空气调节回路的输出时,由拱顶温度调节回路控制助燃空气调节阀;拱顶温度下降或略低于设定值时,拱顶温度调节回路的输出下降,当低于助燃空气控制回路的输出时,重新由助燃空气控制回路按空燃比控制助燃空气调节阀。为避免助燃空气调节回路进入积分饱和状态,在拱顶温度调节回路控制助燃空气调节阀时,需将助燃空气调节回路强制为手动状态。该控制方案达到较好的控制效果,并减少了煤气用量和电能消耗。