6ES7212-1BB23-0XB8代理订购
1、引言
在国产高压变频器的设计中,为了提高高压变频器内部控制的灵活性以及在现场应用的可扩展性,通常在高压变频器中内置PLC。自从20世纪70年代台PLC诞生以来,PLC的应用越来越广泛、功能越来越完善,除了具有强大的逻辑控制功能外还具其他扩展功能:A/D和D/A转换、PID闭环回路控制、高速记数、通信联网、中断控制及特殊功能函数运算等功能,并可以通过上位机进行显示、报警、记录、人机对话,使其控制水平大大提高。
本文以广州智光电机有限公司为攀钢集团成都钢铁有限公司污水处理厂设计生产的国产高压变频器ZINVERT-H800/B10为例,介绍了三菱PLC在高压变频器控制系统中的运用。
2、广州智光电机高压变频器简介
广州智光电机有限公司推出的新一代高性能ZINVERT系列智能高压变频调速系统为直接高-高型变频调速系统,通过直接调节接入高压电机定子绕组的电源频率和电压来实现电动机转速的调节从而达到节能的目的。它是集大功率电力电子控制技术、微电子技术、高速光纤通信技术、自动化控制技术和高电压技术等多学科为一体的高新技术产品。该产品采用主流高性能专用双DSP控制系统和大规模集成电路设计,通过jingque的数字移相技术和波形控制技术实现了高压电机的灵活调节和能耗控制。
3、PLC在国产高压变频器中的设计使用
3.1 PLC主要逻辑控制
(1)用户要求高压变频器在出现故障停机时能快速自动切换到工频旁路运行,笔者给高压变频器专门配置了可以实现自动旁路功能的旁路柜,如图1所示,K1~K4为手动操作刀闸,J1~J3为高压真空接触器。在变频器发生故障时,旁路柜可以在几秒内完成从变频到工频的转换;而变频器在工频运行时,通过1个按钮就可以实现变频器从工频到变频的转换。这样的控制要求增加了变频器整机控制逻辑的复杂性。
图1 自动旁路柜
自动旁路柜控制逻辑简要介绍如下:
变频调速系统退出变频转工频运行有两种方式,一种是自动方式,一种是手动方式,选择自动方式时,当变频器发生停机故障时变频器自动从变频转工频;选择手动方式时则需人工操作。
变频调速系统退出工频转变频运行也有两种方式,一种是自动方式,一种是手动方式,选择自动方式时,只需在控制柜上按一个按钮,变频器就自动完成从工频转变频;选择手动方式时则需人工操作.
(2)PLC控制系统原理图
PLC主机选用输入输出点数48点,型号为FX2N-48MR,PLC作为系统逻辑量控制的控制核心,在自动旁路柜的逻辑关系控制中起着至关重要的作用。PLC控制系统原理图如图2所示。
图2 PLC控制系统原理图
旁路柜的逻辑控制要求比较复杂,采用PLC控制,接线简单,提高了可靠性;旁路柜的逻辑更改也变得很简单,只需修改PLC梯形图程序就可以了,很方便满足用户现场的控制要求。
(3)PLC功能指令实现高压变频器PID闭环控制
用户现场对变频器闭环控制提出的要求是:变频器能够根据用户系统用水量的变化,自动调整变频泵的转速,实现管网恒压供水;还可以在液晶屏上设定压力目标值。
针对用户的要求,PLC配置了模拟特殊模块FX2N-4AD和FX2N-2DA。FX2N-4AD为模拟输入模块,有四个输入通道,大分辨力12位,模拟值输入范围为-10V~10V或者4~20mA;FX2N-2DA为模拟输出模块,有2个输出通道,大分辨力12位,模拟值输出值范围为-10V到10V或者4到20mA。这样通过读取指令(FROM)和写入指令(TO),以及PLC带有的PID闭环控制功能指令(如图3所示),就可以实现对用户现场的管网水压进行PID闭环控制。
图3 带有的PID闭环控制功能指令的PLC 程序
其具体编程过程是这样:PLC读取指令(FROM)读取用户水压反馈值,把反馈值用移动指令(MOV)存入PID指令中的D12数据地址里;把用户的水压设定值用移动指令(MOV)存入PID指令中的D10数据地址里;D200~D222保存PID的运行参数;D14为PID指令的运算值输出,通过PLC的写入指令(TO)把PID闭环运算结果D14写入模拟输出模块,再通过模拟输出模块转换成-10V~10V或者4~20mA的模拟信号送入高压变频器控制器进行频率设定。
在进行PID运行参数设置时,P、I、D的参数设定尤其重要,其设定的好坏直接关系到管网水压控制的好坏。P表示比例增益,设定范围为0~99(%),比例调节设定大,系统出现偏差时,可以加快调节,减少误差,过大的比例增益,会造成系统不稳定;I表示积分时间,设定范围为0~32767(*100ms),积分时间越小,积分作用就越强,I越大则积分作用弱;D表示微分时间,设定范围为0~32767(*10ms),微分调节有超前的控制作用,合适的微分时间能改善系统的动态性能。
攀钢污水处理厂供水管网比较庞大,管网水压对水泵转速的变化响应比较缓慢,PID的计算速度不能过快,即比例调节不能过快,否则如果管网水压突然变化大时,变频器的调节容易形成较长时间的振荡。根据这一情况,如图3所示,可以在PLC控制程序中加入PID间隔计算时间(T0)以及PID运算死区(M0),这样就可以把PID的计算速度调节至与管网水压变化速度相一致,避免管网水压震荡。
(4)PLC功能指令实现PLC与变频器上位机通信
为了使变频器上位机能对PLC进行显示、报警及记录,PLC还配置了通信模块FX2N-232BD,实现与变频器上位机的串口通信,通信编程指令如图4所示。
图4 通信编程指令
PLCRS232串口通信可使用无协议(RS指令)或专用协议与上位机进行通信,本例中使用无协议与上位机进行通信,如图四所示:D8120用于设定PLC通信格式,D50表示发送起始地址,K60表示发送字节数量,D150表示接收起始地址,K20表示接收字节数量。
4、结束语
高压变频器自动旁路柜采用PLC进行旁路逻辑控制,通过在攀钢污水处理厂运行的智光高压变频器模拟故障说明,高压变频器自动旁路柜在从变频转工频,工频转变频的相互切换非常方便,能在10s以内完成,大大提高了水泵运行的可靠性。现场PID闭环控制效果非常理想,水压波动非常小,波动在超过0.1kg时,变频器能迅速调节转速,把水压控制在设定范围内,调节转速时不会产生任何振荡。通过PLC与高压变频器控制器的串口RS-232通信,在高压变频器液晶屏上能监视系统管网水压及PLC各种状态量
1.概述
1)袋式收尘设备简介
袋式收尘设备在适用于建材,煤炭,电力,冶金,制药,机械,化工,轻工,粮食等行业的非纤维性废气除尘。
2)袋式收尘原理
当含尘烟气由进风口进入灰斗以后,一部分较粗尘粒在这里由于惯性碰撞、自然沉降等原因落入灰斗,大部分尘粒随气流上升进入袋室,经滤袋过滤后,尘粒被阻留在滤袋外侧,净化的烟气由滤袋内部进入箱体,再由阀板孔、出风口排入大气,达到收尘的目的,随着过滤过程的不断进行,滤袋外侧的积尘也逐渐增多,从而使收尘器的运行阻力也逐渐增高,当阻力增到预先设定值(1200~1500Pa)时,清灰控制器发生信号,控制提升阀板孔关闭,以切断过滤烟气流,停止过滤过程,电磁脉冲阀打开,以极短的时间(0.1~0.15秒)向箱体内喷入压力为0.5~0.7MPa的压缩空气,压缩空气在箱体内迅速膨胀,涌入滤袋内部,使滤袋产生变形、震动,加上逆气流的作用,滤袋外部的粉尘便被清除下来掉入灰斗,清灰完毕之后,提升阀打开,收尘器又进入过滤状态。
上述的工作原理所表示的仅是一个室的情况,实际上气箱脉冲式袋收尘是由多个室组成的,清灰时,各室分别顺序进行,这就是分室离线清灰,其优点是清灰的室和正在过滤的室不干扰,实现了长期连续作用,提高了清灰效果。
3)袋式收尘的控制系统
袋式收尘设备依据实际工况的需要,控制系统的配置情况较多,客户设备的控制系统由某品牌的PLC更换为施耐德电气的Twido系列PLC后,利用了施耐德电气PLC所特有的优点,使客户不同配置设备之间的PLC控制程序极其相似,不同设备间程序只做很小的改动,就可在不同硬件配置的设备上使用。在这里以某客户的一个具体机型进行说明,控制系统需要18个开关量输入/56个开关量输出,使用Twido作出以下配置:TWDLCAA24DRF+TWDDMM24DRF+TWDDRA16RT(x2),另配一个TSX08H02M两行文本显示器,用来显示设备的运行状态以及设置设备的一些运行参数。
2.系统描述
袋式收尘的控制系统要求比较简单,但实现起来PLC的程序部分比较繁琐。其基本控制功能有设备状态指示、电机启停及故障报警,这一部分功能的实现比较容易,它的清灰动作输出部分在实现上有比较特别之处,在本文中会把重点放在这一部分。
清灰部分动作有1#~16#脉冲阀、1#~16#提升阀及1#~4#卸灰阀36个输出点的输出控制。具体控制要求如下:
1)脉冲阀、提升阀、卸灰阀进入循环状态:
1#提升阀通(T1时间后)→1#脉冲阀通(T2)→1#脉冲阀断(T3)→1#提升阀断(T4)→2#提升阀通(T1)→2#脉冲阀通(T2)→2#脉冲阀断(T3)→
2#提升阀断(T4)......→16#提升阀通(T1)→16#脉冲阀通(T2)→16#脉冲阀断(T3)→16#提升阀断(T0)→1#提升阀通(TI)→1#脉冲阀通(T2)→1#脉冲阀断(T3)→1#提升阀断(T4)......
每当2,4,6,8,10,12,14,16号提升阀关断后,也即小循环完成后,开始一个卸灰循环:1#卸灰阀通(T11)→1#卸灰阀断(T12)→2#卸灰阀通(T11)→2#卸灰阀断(T12)→3#卸灰阀通(T11)→3#卸灰阀断(T12)→4#卸灰阀通(T11)→4#卸灰阀断。
2)按一下脉冲阀测试按钮,1#脉冲阀通0.25秒后关断,再按一下脉冲阀测试按钮,2#脉冲阀通0.25秒后关断,再按一下脉冲阀测试按钮,3#脉冲阀通0.25秒后关断....按第十六下脉冲阀测试按钮,16#脉冲阀通0.25秒后关断,再按又回到1#脉冲阀......
3)按一下提升阀测试按钮,1#提升阀通,再按一下1#提升阀关,再按一下提升阀测试按钮,2#提升阀通,再按一下2#提升阀关......按一下提升阀测试按钮,16#提升阀通,再按一下16#提升阀关,再按又回到1#提升阀......
4)卸灰阀测试原理和提升阀相同,4#卸灰阀通、断后又回到1#卸灰阀。
分析上述控制要求,在PLC程序中实现这些功能比较麻烦,如果设备的收尘室数目增加时,这一部分的程序将会更加冗长。客户反映,以前用某品牌的PLC时,程序的编制、调试及维护都有很多不便之处。根据客户的实际情况,结合施耐德电气PLC本身的特点,对设备的控制思路做了优化,以完美的实现设备的要求。
在对客户的控制要求进行深入分析的基础上,发现控制要求中是有一定的规律:每个循环中脉冲阀、提升阀和缷灰阀的每个小循环动作是相同的,只是具体的阀的输出不同。脉冲阀和提升阀有16个小循环,缷灰阀有4个小循环,每个小循环中只有1个同类的阀在输出(脉冲阀、提升阀或缷灰阀)。
基于以上分析,在Twido的程序中将做以下重点处理:
1)需要对清灰动作所涉及的36个输出点合理规划,使其具有特定的规律,理由可由下面的描述中得到。4个缷灰阀分配到个扩展模块TWDDMM24DRF,在PLC中地址为%Q1.0~%Q1.3,16个脉冲阀分配到第二个扩展模块TWDDRA16RT,在PLC中地址为%Q2.0~%Q2.15,16个提升阀分配到第三个扩展模块TWDDRA16RT,在PLC中地址为%Q3.0~%Q。
2)不采用位变量作为脉冲阀、提升阀或缷灰阀的中间变量,否则会涉及大量的位变量操作。将这些阀的输出状态填写到Twido的常量字中,如图1所示,
利用施耐德电气PLC的位变量的结构化功能,将常量字内容赋值给输出点的组合对象经过如此处理,不仅大量减少中间位变量的使用,可以将本地操作/远程操作及阀门测试时对输出点的操作共用起来,带来的好处不言而喻。
3)用1个设置计数值为16的计数器(%C1)对脉冲阀和提升阀进行记录,以得到脉冲阀和清灰阀小循环的位置;用1个设置计数值为4的计数器(%C2)对缷灰阀记录,以得到缷灰阀大循环的位置。
4)用Twido的索引对象(相对寻址)结合小循环计数器%C1与大循环计数器%C2的计数值,得到循环某一位置时的输出状态。见图2。
的计数值,得到循环某一位置时的输出状态。见图2。
5)用相同的原理编写脉冲阀、提升阀与缷灰阀的程序。得到相应的输出的状态字。
6)将各种状态得到的输出字做或运算,产生终的输出,将输出状态字的值赋给输出点的结构化对象。如图3所示。
使用以上思路设计Twido的程序后,程序的整体长度只有客户原来使用的某品牌的
PLC的程序长度的1/4,程序结构简洁明了,修改及调试的工作量非常小。在客户的不同输出点配置的袋式除尘设备中,使用本文的设计思路后,不同设备间的程序非常类似,有良好的通用性,得到了客户的认可。
3.结束语
由于Twido系列PLC本身所特有的强大功能,使得设备的终的控制程序的长度相比于其它品牌的PLC非常短,程序在不同清灰室配置的设备中有通用性,在该客户陆续使用的100多套设备中,设备的运行情况良好,客户的程序设计及维护的工作量大大减少,客户对施耐德电气的解决方案给予极高的评价。