6ES7214-1AD23-0XB8厂家质保
茂名市第二自来水厂的日产量为2×105立方米,提供茂名市区70%以上的日常用水。为缓解该市的供水紧张状况,市政府加大投资力度,对该水厂进行扩建。该水厂设备自动化程度较高,整个自控系统采用(PC+PLC)的组成形式。滤池控制在水厂自动化中属于较难设计的环节,主要表现在反冲洗过程中开、关阀顺序和开、关阀条件的复杂上。本文主要阐述该厂扩建滤池自控系统的主要设计过程。
2 滤池系统的控制任务
2.1工艺要求
第二自来水厂新扩建的V型滤池共设六个滤格,每格安装有一个液位计、一个阻塞仪,每滤格均有各自的进水阀、清水阀、气冲阀、水冲阀以及排水阀和排气阀。用于气冲的鼓风机有3台(两用一备);用于水冲的3台反冲洗泵(两用一备);两台空气压缩机(一用一备);1台干燥器。
待滤水进入滤池的各单元滤格,经石英沙恒速过滤后,再进入清水池。过滤的工艺要求滤格内的水位保持在滤料上的1.2米处,在这个水位上,过滤的效果好。为实现等速恒水位过滤,就要使滤池的出水量等于进水量,应根据滤池水位变化来调节出水阀的开启度以控制出水量的大小。而当滤池的运行满足反冲洗的约束条件时,需要进行反冲洗清洁滤沙。反冲洗是通过控制滤池进水阀、清水出水阀、反冲进气阀、排气阀、反冲进水阀、反冲排水阀并运行反冲水泵、风机等来实现的。
滤池控制系统的任务主要是过滤时的液拉控制和清洁过滤砂时的反冲洗控制,过滤和反冲洗不断循环交替进行。
2.2 对控制系统的性能指标要求如
(1)实现自动恒水位过滤,误差:±1.5㎝;
(2)根据下列约束条件之一,能准确地实现自动反冲洗:
?过滤时间达到反冲洗设定周期(如48小时)仍未反冲洗的;
?过滤水头损失值到达设定值(150)且延时时间(15分钟)已到,仍未反冲洗的;
?强制反冲洗按钮被触发。
(3)反冲洗周期、反冲洗过程中各步骤的时间均可通过程序设定,满足工艺及实际操作要求。
(4)能直观显示滤池过滤水位、水头损失及出水阀开启度,显示反冲洗设备、本地滤池阀门等的开关状态。
(5)对反冲洗设备、本地滤池阀门及反冲洗过程既可以实现全自动控制,也可以进行手动控制。
3 滤池的控制原理与运行过程
3.1 恒水位控制原理
滤池的恒水位控制如图1所示。
每个滤池将滤池水位检测值和水位设定值进行比较,得到水位偏差信号Δe,经PID运算后把输出信号送给输出附加处理程序,再输出给出水阀的伺服电机以控制出水阀的开度。开度增大的数值是由一定累积时间内水位上升的速度及水位偏差共同决定的。若进水流速越快,出水阀开度就越大,越小。PID运算的目标是把水位保持在设定值,附加值可作为补偿添加到输出控制中。输出附加处理程序是把PID的运算结果按一定的规律输出给清水阀伺服电机。
图1滤池恒水位控制系统图
3.2 反冲洗过程
当控制系统接收到反冲洗指令信号时,按照先进先出的原则排队进行反冲洗。反冲洗分气洗、气水混合洗、水洗三个阶段,过程如下:关闭待滤水进水阀,当水位降至设定的反冲水位时,关闭清水出水阀并打开废水排水阀,排水阀的信号到位后先关闭排气阀,再打开反冲进气阀,启动台风机进行气冲,气冲需要时间1-3min;完成后,打开反冲进水阀,再启动第2台风机及第1台水泵,进行气水混合洗,时间为5min;关闭2台风机,关闭反冲进气阀,打开排气阀,启动第2台水泵,进行单水冲洗,需要时间3-6min,完成后关闭反冲进水阀,停2台反冲洗水泵,关闭排废水阀,打开待滤进水阀,打开滤后清水阀。当水位升到过滤恒水位时,系统又转入正常的过滤程序。
4 控制系统设计
4.1 硬件构成及网络结构
本系统采用PC+PLC的构成形式。上位机由一台COMPAQ微机和两台打印机组成,下位机由模拟屏PLC8、公共冲洗PLC7和六个单元滤池PLC1-6共八台施奈德公司的PLC组成,如图2所示。
各PLC采用双绞线电缆连成的总线形接出式拓朴结构通信网,其又称FIPWAY通信网,传输速率为1Mbps。各PLC之间彼此进行通信,实现数据共享。单元滤池和公共冲洗的PLC,均配备一台现场XBT—B(人工智能接口),它通过电缆与PLC联系,在XBT操作盘上可以对滤池进行现场手动控制。各单元滤池PLC通过FIPWAY网络与公共冲洗PLC相连,公共冲洗PLC又通过网络进入水厂中控室和微机联网,故系统能在中控室内对滤池的运行进行远程监控,实现了中控室计算
图2滤池自控系统网络图
机集中监控、PLC远程控制、现场XBT操作的三级控制,从而确保了滤池生产运行的安全可靠性。
本系统PLC配置如下:
PLC8:TSX47/415的CPU/COM、POWER、DI各一块;DO为9块。模拟屏设有D/A转换器。
PLC7:TSX67/455的CPU/COM、POWER、DO和AI(TSXAEM811)各1块;DI为2块。
PLC1-6:TSX47/415的CPU/COM、POWER、DI、DO、AI(TSXAEM411)各1块。
PLC与PC机的通讯,要先在PC机安装TE公司的专用FIPWAY通讯网卡,通过RS422通讯接口进行数据通讯。
4.2 PLC的控制功能
单元滤池的PLC主要完成本格滤池的恒水位过滤控制和每格滤池的进水阀、出水阀、排污阀、反冲进气阀、排气阀、反冲水阀等的自动控制,及数据采集,并与公共冲洗PLC交换数据信息。当滤板下的阻塞仪将滤床阻塞程度信号转送给滤池单元PLC,PLC接收信号后,与水头设定值进行比较、显示出来,用以决定滤池是否要反冲洗,并传送至公共冲洗PLC。滤池的开启个数由进水流量决定,每个滤池由液位计和阻塞仪测出滤池的水位和水头损失值,并和滤后水阀门开度这三个参数送单元PLC,经PLC内置PID运算后,若水位偏差超过1.5cm时,PLC立即启动控制单元自动调整滤池出水蝶阀的开度,维持滤池水位基本恒定,从而实现恒水位过滤。
公共冲洗PLC负责六个滤池的反冲洗排队协调、和对反冲洗设备(反冲水泵、鼓风机等)及其进出口阀门的监控。当单元PLC向公共冲洗PLC发出反冲洗请求时,公共冲洗PLC则开始启动反冲洗程序对该滤池进行反冲洗控制。当某滤格正在反冲洗时,若又有一个或多个滤池发出反冲洗请求信号时,则此信号被存入公共冲洗PLC存储器中,按存储先后顺序进行冲洗,排队等待反冲洗的滤池则维持正常的生产。
模拟屏PLC的作用是驱动模拟屏工作及实现与水公司电台系统、微机的通讯。在模拟屏上能动态显示整个水厂的工艺流程和设备运行状态以及其主要的工艺参数,并实现声光报警,便于生产调度管理。
4.3 程序设计
当滤池满足反冲洗控制约束条件之一时进行反冲洗。本系统用一个反冲洗PLC实现六个滤池的排队反冲洗,通过公共程序的读写命令采集整组滤池的反冲信息及滤池具体水位情况并发出命令。公共程序的主要内容包括:反冲水泵风机控制程序、公共PLC与其他各单元PLC信息的读写程序和滤池排队程序。
每格滤池的工艺过程基本相同,其PLC程序结构也相同,可用子程序的形式,如图3所示。每个滤池程序包括初始化命令及滤池的自动状态、手动状态、现场状态等程序。滤池自动状态程序包含反冲洗状态、整理状态、正常过滤状态三个子程序。滤池手动状态程序包含各个阀门的手动操作命令。滤池现场状态程序主要内容包含:(1)在滤池由自动状态转到现场时已发出的命令必须全部复位。(2)自动状态中的某些变量,如时间变量、计数器变量等必须复位。(3)针对反冲必须在这个状态下发出一个结束反冲命令。
4.4系统监控软件
本系统上位机采用bbbbbbs NT操作系统,实时监控软件选用Wonderware公司的InTouch7.0工业组态软件,它主要包含bbbbbbMaker和bbbbbbViewer两个程序。上位机配备有遵循FIPWAY通讯协议的通讯网卡,实时采集生产数据。通过监控计算机可清晰地显示滤池的过滤、等待、反冲等运行过程中动态的工艺模拟画面,可对系统的所有设备进行远程操作和控制,并具备显示工艺布置图、实时动态参数、设备的工作状态及实时/历史报警信号、在线仪表的实时/历史趋势曲线、马达运行时间等功能,可进行离线/在线编程及设定参数的修改,编制和打印生产与管理报表。
5 新旧系统的联网问题
由于新建的滤池系统与水厂原系统是用不同公司的PLC开发成的两套独立系统,两系统的通信协议不同,它们之间没有数据通信,这给生产和管理带来一定的麻烦。两期的监控组态软件都采用了InTouch,但所用版本不同。从技术改造成本和公司技术力量来考虑,决定利用InTouch基于以太网并兼容TCP/IP通信协议的网络功能来实现两套独立系统的联网控制。具体方法如下:
先用交换机组建一个以太网,系统示意图如图4,并在原系统监控微机PC1
和新建系统监控微机PC2上分别安装TCP/IP通信协议、NetDDE程序。
再对InTouch监控系统软件进行设茫篴. 运行InTouch的开发环境bbbbbbmaker,利用“import”功能将新旧两期程序数据整合成为一个完整的应用程序,分别安装在PC1和PC2上,这样就可以在任一台PC上对生产进行监控;b.对InTouch的DDE Access进行设置,方法是在“Modify DDE Access Name”对话框中的“DDE Application/Server Name”栏增加“\\PC2\viewer”(在PC1上)和“\\PC1\viewer”(在PC2上)。通过这个设置,PC1和PC2就可通过以太网进行实时数据通信;c. 初始化NetDDE,运行InTouch bbbbbbviewer,PC1和PC2即可进行实时通信。
6 结束语
滤池经一段时间的运行后显示出控制系统应用效果良好,系统的各项控制性能指标均能达到设计要求。在正常情况下,本滤池水位波动被控制在设定值的±1.5cm范围内,实现了自动过滤及六个滤池自动排队和反冲洗,并间接实现了与水厂原系统的联网控制,整个控制系统的设计基本满足了生产要求,达到了预期效果。
一、概述
锅炉是目前城市的主要空气污染源,尤其是在北方城市,烟筒林立的现象仍然存在。改善这种情况的方案之一是拆除那些设备陈旧、效率低、污染大的小锅炉房,合并成大锅炉房实行集中供热,并采用计算机控制、变频器等先进技术,从而有效地减少污染,提高效率,节约能源,也可以提高供暖质量,目前很多城市在实施这一方案。
某高校原有四台个小锅炉房,现改造合并成一座大锅炉房,新建四台锅炉,其中一台15吨蒸汽锅炉,三台20吨热水炉,负责全校教学区,宿舍区,家属区的供暖任务,以及食堂,浴池等的供汽任务。我们结合多年设计锅炉控制系统的经验,为新锅炉系统设计了热工控制部分,锅炉的鼓风,引风,炉排,以及供暖循环泵等都采用变频调速控制,锅炉系统则采用自行设计的计算机集散控制系统,实现了供暖锅炉的现代化控制与管理。本文介绍此集散控制系统的设计与实现。
二、系统总体结构
锅炉系统工作在高温高压条件,有一定的危险性,对控制系统的可靠性要求高,在系统结构上,我们采用了集散型控制系统的方案。系统主要由现场控制层、车间监控层和企业管理层三个层次构成。选择研华Adam5511软PLC做现场控制单元,每台5511完成一台锅炉的控制任务;监控层采用奔腾III工业控制机做上位机操作站,显示实时数据以及操作画面;系统设置有数据库服务器及WEB服务器,管理人员可以通过
internet浏览锅炉的实时和历史数据,并据此进行系统的运行优化等工作,构成了系统的管理层。现场控制站与操作站之间采用RS485总线,MODBUS协议通讯;操作站、工程师站及服务器之间采用以太网连接。整个系统可靠性高,又具有先进的控制与管理功能,而其成本较采用进口DCS低一倍以上,是类似系统的方案。系统的总体结构如图1所示。
图1 系统总体结构
三、系统功能设计
1) 车间监控层及管理层
监控层设置两台(或多台)操作员站、一台工程师站,一台服务器。操作员站采用研华奔腾III工业控制微机,主要用于锅炉系统的数据显示及进行控制操作,工程师站采用奔腾IV微机,用于进行系统参数设定及系统维护。
操作员站的主要功能是提供给锅炉系统操作人员一个直观方便的人机界面。系统可具有两个或两个以上的操作员站,他们具有同样的功能并互为备用。操作员站设置有如下显示画面。
l 流程画面:将现场控制站采集的现场数据及工艺参数显示在流程图的相应位置上,通过动画直观的显示锅炉运行状态及各种实时数据。操作人员可根据此画面了解整个锅炉系统的运行情况
l 工艺参数画面:以数据表格的形式实时显示各工艺参数与对应的名称,单位,可显示对锅炉耗煤量,产汽(供热)量,用水量等的计算和累积结果。
l 调节画面:将系统各控制回路的运行状态和有关参数以调节棒图的形式显示出来。可以显示回路的手自动状态。操作人员利用键盘或鼠标方便的对各控制回路,的控制参数进行再线修正。
l 报警画面:用于记录何时何地有何报警,以便有关人员查询,实现安全连锁控制
l 历史趋势画面:用于记录系统主要工艺参数的长期历史趋势数据,以曲线的形式显示出来,可为分析系统运行情况及效率,查找故障等提供依据。
工程师站除具有操作站的全部功能外,还具有参数设定与修改,系统维护等功能。可设定系统的各模拟量测量点的标度变换系数、热电阻、热电偶的线性化参数、孔板流量计算参数、给煤量计算参数、锅炉及供热热效率参数、各控制回路组态参数、及PID参数等。工程师站负责系统的打印任务,可打印即时报警,历史报警记录以及锅炉运行日志和历史数据表格等。
系统通过Web服务器将锅炉系统数据及工艺参数送至校园网或企业内部网,使有关领导可从内部网上看到锅炉系统的运行状况,并可实现系统的远程诊断和维护。
管理层实现更的管理功能,位于企业厂长经理室,可通过internet 浏览系统 的运行数据,监视系统的运行状态,对系统的运行进行计算统计和优化等。工程技术人员或企业领导无论出差何地,都可查看系统数据,甚至进行系统维护。
2)现场控制层
现场控制层采用研华公司的产品,称为软PLC的 Adam5511. 这是一种模块化的工业控制机,固化有dos操作系统,支持C语言编程,支持Modbus通讯协议,每台锅炉由一台Adam5511负责对其进行数据采集及控制,另有一台Adam5511负责系统公共部分的数据采集及控制。
每台Adam5511配置16点模拟量输入,4点模拟量输出,16点开关量输入输出。可采集16点锅炉运行现场数据,组成4个闭环控制回路。分别控制蒸汽锅炉的水位、汽压、炉膛负压,鼓风四个回路或热水锅炉的出水温度、炉膛负压及鼓风三个回路。
四、系统软件
系统的操作站软件采用了中文工控组态软件MCGS设计,MCGS是全中文工业自动化控制组态软件,可稳定运行于bbbbbbs95/98/NT操作系统,集动画显示、流程控制、数据采集、设备控制与输出、网络数据传输、双机热备、工程报表、数据与曲线等诸多强大功能于一身,使生成的系统图文并貌,运行稳定可靠。
系统的现场控制站的软件采用Turbo C 3.0设计,软件采用模块化的设计方法,它以实时数据库为核心,各种数据采集、处理、运算以及控制功能都设计成功能块的形式,系统的实时数据以及各功能块参数都存于实时数据库中,各功能块通过实时数据库交换数据。可通过在上位机进行组态下载组态参数至5511中构成新系统。控制站与操作站之间采用modbus协议交换数据。
五、锅炉系统控制回路
锅炉是一个复杂的控制对象,其控制回路非线性严重,控制回路之间有耦合,系统采用智能变形PID算法,配和前馈等控制方法实现对锅炉个回路的控制。
小型蒸汽锅炉的控制回路主要包括蒸汽压力、汽包水位、炉膛负压和鼓风控制回路;热水锅炉则包括出水温度、炉膛负压和鼓风控制回路。
锅炉的蒸汽压力(或出水温度)以及炉膛负压、鼓风控制回路构成锅炉的燃烧控制系统其控制方案是采用蒸汽压力或出水温度为主调量,通过调整炉排转速使蒸汽压力或出水温度尽快达到给定值,配合风-煤配比控制鼓风量达到经济燃烧,炉膛负压回路则将炉膛内的压力保持在微负压。
热水炉的出水温度设定值跟随室外温度的变化自动修正,使用户室内的温度保持恒定,实现经济供热。温度设定曲线可根据不同供热时期有所变化改变。
锅炉水位控制回路使锅炉水位保持恒定,由于锅炉水位受蒸汽负荷的影响较大,容易产生假水位,给水控制回路引入蒸汽流量及给水流量前馈控制的三冲量控制方案,以消除假水位的影响。
除常规控制回路外,对锅炉燃烧控制系统,我们还设计了自动寻优算法。锅炉运行过程中,寻优程序将根据计算出的锅炉热效率以及燃烧情况,自动调整锅炉的风煤配比,使燃烧达到佳,从而实现节煤和减少污染的目标。
六、结束语
本文设计的集散型锅炉微机控制系统经实际使用,完全达到了设计要求。该系统的使用使城市小区供热锅炉的控制与管理达到了新的水平,可显著提高供热系统的运行效率以及供热效果,在节约能源,减少城市污染方面效果显著。根据运行结果初步统计,供热锅炉使用变频器及本文设计的集散微机控制系统后,可以节电30-40%,节煤3-5%,一年就可收回投资成本,是城市集中供热计算机控制系统的方案。
1 引言
某厂的B2025龙门刨是七十年代初由武汉重型机床厂生产,其控制系统是传统的继电器-接触器控制系统,工作台前进、后退、升速、减速及超程保护等重要位置采用的是有触点的行程开关,它们动作频繁,触点经常出现粘连,或闭合不好,导致工作台工作故障,维修工作量大,影响生产;机床的主拖动系统采用直流发电机-直流电动机拖动系统,调速系统采用半导体分离元件,以及接插件结构,不仅噪声大,浪费能源,在经过近三十年的使用后,整个系统已经严重老化,在低速段已严重不能达到加工要求,有时候甚至会出现爬行现象,调速性能极不稳定。为了充分利用机床仍然良好的机械精度以及完好的大功率直流电机,有必要利用现代控制技术和电力电子技术对机床的控制系统和驱动系统进行技术改造。
2 系统需求分析
进行机床改造的总体设计时,需要考虑到控制系统和驱动系统的协调。本机床的动作控制绝大部分属于逻辑控制,选择可编程序控制器来完成机床的动作控制。由于原机床的直流电机功率为60KW,成本较高,仍然完好,工作台仍然采用原直流电机驱动;而直流驱动部分涉及到调速需要,一方面在正常加工时工作台的正、反向运行速度需要根据工作台的位置自动调整,另一方面工作台的切削运动速度又要根据切削用量进行调整。结合工厂的实际情况,本机床只用于粗加工,不同的速度需求主要是工作台往返工作造成的,而对具体的速度值的精度要求并不高,驱动系统选择欧陆590系列全数字直流驱动器594。
3 硬件组成
3.1 硬件系统方案
根据系统需求分析,确定出整个控制、调速系统的硬件方案如图1所示。
悬挂操作站主要提供工作台前进起动、工作台后退起动、工作台步进前进、工作步进后退、横梁上升、横梁下降、垂直刀架快进、左侧刀架快进、右侧刀架快进和急停等信号。
控制柜按钮主要提供工作模式选择、工作刀架选择、594使能、594使能停止、程序停车、停车和急停等信号。
各种行程开关包括工作台前进、后退中减速和换向接近开关、各刀架抬落刀行程开关、各刀架进刀行程开关和横梁放松行程开关。
各类保护信号包括各刀架抬落刀电机的热保护、各进给电机热保护、横梁松紧电机的过流保护、通风电机的热保护、左右垂直刀架的位置保护横梁上下位置的保护、左右侧刀架的位置保护等信号。
速度给定电路由电位器调节输出电压,由PLC选择速度给定电路的输出电压,将此电压信号传送给594,从而控制工作台直流电机的转速和转向,实现工作台的调速和换向要求。
图1 控制系统硬件组成方案
3.2 硬件设计
本系统的输入输出全部是数字量,其中,数字量输入点总计66个,数字量输出点总计37个,选择西门子PLC CPU224(AC/DC/继电器)为主机,并扩展5个数字量扩展模块,它们分别是一个EM223(16DI/16DO,继电器输出)、一个EM223(16DI/16DO 晶体管输出)、三个EM221(8DI)。
速度控制电路如图2所示。直流驱动器594的B3为+10V参考电压端子,B4为-10V参考电压端子,A1为0V参考电压端子,A4为速度给定电压端子,R1~R8为可调电位器。B3与0V参考电压端子之间可以有四条回路:从B3端分别经R5、R6、R7、R8,到A1,这四条回路中每接通一条回路,速度给定电压端子A4就从相应的电位器上取得相应的电压,从而实现给定一定的速度,A4从这四条回路取得的电压为正电压,此时电动机正转,驱动工作台前进。同理A4从B4与A1之间所形成的回路取得四种负电压,从而实现电动机的反转,驱动工作台后退。
图2 速度给定电路
4 软件设计
按照机床的工作要求,考虑到尽量符合改造前操作人员的操作习惯,设置了自动工作模式和手动工作模式。
手动工作模式下能够完成垂直刀架快速进给、左侧刀架快速进给、右侧刀架快速进给、横梁升降控制、工作台步进前进和工作台步进后退等动作。
4.1 横梁升降控制
横梁升、降的前提是横梁处于松开状态;横梁下降到指定位置后,一方面要保证横梁保持水平,另一方面要尽快制动横梁的下降运动,设计中使横梁有短暂的上升动作来达到要求;横梁上升或下降完毕后还需要让横梁夹紧。图3给出了横梁升降控制PLC梯形图。
图3 横梁升降控制程序段
图3中Network 4程序段完成横梁的下降控制,当按住横梁下降按钮(I0.1),横梁开始放松(Q0.2),放松完毕,放松限位开关(I0.2、I0.3)接通下降回路,横梁开始下降(Q0.1);横梁下降到位,松开下降按钮(I0.1),其常闭触点接通,取其上升沿接通横梁上升(Q0.0)回路并自保持,计时器T37开始计时,计时时间到,横梁上升结束。其它输入输出有横梁上升按钮I0.0、横梁夹紧电流继电器I0.4、横梁上升限位开关I0.5、左侧刀架与横梁互碰限位开关I0.6、右侧刀架与横梁互碰限位开关I0.7、横梁夹紧接触器Q0.3。
4.2 刀架进给、制动控制
在自动工作模式下,需要进行刀架的进给、制动控制。为了检测进给电机的转数,将进给电机的转动信号通过凸轮机构传递给行程开关。通过控制进给电机的转数达到控制进给量的目的;进给电机每转代表的进给量是通过调整进给箱的传动比实现。图5所示为自动工作模式下右侧刀架的自动进给控制梯形图。
图5 右侧刀架进给程序段
右侧刀架被选中(I3.4)工作的情况下,若进给电机过载保护继电器(I3.5)没有动作且自动进刀选择开关(I3.2)接通,右侧刀架处于正常位置,即右侧刀架与横梁互碰限位开关(I3.1)右侧刀架下限位开关(I3.0)未受压,则进行进给动作(Q2.4);进给电机转动时,右侧刀架进给检测行程开关(I3.3)从接通到断开到再接通,利用其上升沿通过计数器(C3)进行计数;当计数器计数到预置值,进给完成,停止进给电机。另一方面,利用计数器的上升沿启动电容制动回路(Q2.5)并开始计时器(T44),计时时间到,断开电磁制动回路,从而完成进给过程。左侧刀架、垂直刀架的进给、制动与此类似。
通过拨码开关可以设定每次进给时进给电机的转数(限制在1~4的范围内),并将设定值存储在VW4中,从而达到调整进刀量的目的。
5 结束语
本机床经改造后一年多的运行情况证明,采用PLC和欧陆594对机床进行改造后,既没有改变操作人员的操作习惯,又增强了进给控制功能,提高了控制系统和驱动系统的可靠性和稳定性。本项目实施后产生的经济效益150万元。
本文作者创新点:利用PLC设计了方便、实用的速度给定电路,与采用操作员面板设定速度、利用通讯功能设定速度相比,成本低廉,适用于对速度精度要求不高的普通机床。