6ES7518-4TP00-0AB0
本文从众多应用案例中,提炼整理出常见的偏位原因及对策,用以帮助设备厂家调试人员快速定位问题、采取各种适宜措施提高设备抗干扰性、为设备正确接地保证正常运行。
偏位的现象、原因及解决办法(规律性和非规律性偏位两种)
1.规律性偏位
偏位现象1:做往复运动,往前越偏越多(少)。
可能原因①:脉冲当量不对
原因分析:无论是同步轮结构还是齿轮齿条结构,都存在加工精度误差。运动控制卡()并没有设置准确的脉冲当量。例如上一批同步轮电机旋转一圈设备前进10mm,这批同步轮大一点电机转一圈前进了10.1mm,就会导致该批机器每次运行比以前的设备多走1%的距离。
解决方式:出机前用机器画一个尽可能大幅面的正方形,用尺去量实际尺寸,对比实际尺寸和控制卡设置尺寸之间的比例,将其加入控制卡运算,反复进行三次之后就会得到一个比较准确的值。
可能原因②:脉冲指令的触发沿与方向指令的电平变换时序冲突
原因分析:驱动器要求上位机发出的脉冲指令的沿与方向指令电平变换有一定时序要求。而部分plc或运动控制卡编程时没满足这种要求(或者其自身的规则不符合驱动器的要求),导致脉冲和方向时序并不能满足要求而偏位。
解决方式:控制卡(plc)软件工程师将方向信号提前。或者驱动器应用技术人员更改脉冲沿计数方式。
偏位现象2:运动过程中电机在固定点抖动,过该点后能正常运行,但少走一段距离
可能原因:机械装配问题
原因分析:机械结构在某个点阻力较大。由于机械安装的平行度、垂直度或设计不合理的原因导致设备在某个点阻力较大,的力矩变化规律是速度越快力矩越小,很容易在高速段卡死,速度降下来却能走过去。
解决方式:
1)检查机械结构出现卡死的原因,是该处摩擦阻力大还是滑轨装得不平行等。
2)步进电机力矩不够。由于终端客户出现提速或者加大负载的要求,导致原本能满足要求的电机在高速力矩不够,从而发生高速段堵转的现象。解决方法可以通过驱动器设置更大输出电流或者在驱动器允许电压范围内提高供电电压,或更换更大转矩的电机。
偏位现象3:电机往复运动来回均没走到位且偏移量固定
可能原因:皮带间隙
原因分析:皮带与同步轮之间存在反向间隙导致,往回走会存在一定量的空程。
解决方式:如运动控制卡具有皮带反向间隙补偿功能,可利用之;或者绷紧皮带。
偏位现象4:切绘轨迹不重合
可能原因①:惯量过大
原因分析:平板切绘机喷墨过程由光栅控制,扫描式运动,切割时走插补运动,两者轨迹不重合是因为,类似设备x轴小车惯量较小且由光栅定位,喷绘位置准确,而y轴龙门结构惯量较大,电机响应性差,插补运动时y轴跟随性不好导致轨迹部分偏位。
解决方式:增加y轴减速比,使用陷波功能提高伺服驱动器刚性以解决该问题。
可能原因②:刀和喷头重合度没调好
原因分析:因为切绘机刀和喷头都装在x轴小车上两者有坐标差,切绘机上位机软件能调整这个坐标差做到刀和喷头轨迹重合,如果没调好,切绘轨迹会整体分离。
解决方式:修改刀和喷头位置补偿参数。
偏位现象5:画圆成椭圆
可能原因: xy轴平台两轴不垂直
原因分析:xy轴结构,图形偏位例如画圆成椭圆,正方形偏位成平行四边形。龙门结构x轴与y轴不垂直时会导致该问题。
解决方式:调节龙门架x轴与y轴垂直度可以解决该问题。
2.非规律性偏位
偏位现象:运行过程中不定期出现偏位,偏位具有偶然性,偏位多少不确定
可能原因①:干扰原因导致电机偏位
问题分析:非周期性偏位大部分因为干扰导致,少部分因为运动控制卡发出的窄脉冲或者机械结构松动引起。
解决方式:
如果干扰出现的比较频繁,则可以利用监控脉冲频率确定干扰发生的时间进而确定干扰源,移除或者使脉冲信号远离干扰源能解决部分干扰。如果干扰出现的比较偶然,或者难以确定干扰源位置或柜已固定难以移动,则可以考虑采用以下措施来解决问题:
①驱动器接地,② 脉冲线更换双绞屏蔽线,③ 脉冲正负端并联103陶瓷滤波(脉冲频率小于54khz),④ 脉冲信号套磁环,⑤驱动器和控制器前端增加滤波器。
备注:常见的干扰源包括变压器、线圈式、、电磁阀、高压电线等。规划电气柜的时候应避免信号线靠近这些干扰源,信号线与高压供电线宜分不同线槽布线。
可能原因②:脉冲串出现窄脉冲
问题分析:客户运动控制卡发送脉冲串占空比较小或过大,出现窄脉冲,驱动器识别不了,导致偏位。
解决方式:查找控制器出现这种问题的原因,是脉冲接口问题,还是软件算法问题
可能原因③:机械结构松动
问题分析:连轴器、同步轮、减速机等用顶丝固定或螺丝夹紧的连接件在快速冲击场合运行一段时间可能出现松动,导致偏位。用键和键槽配合固定的同步轮则注意键和键槽之间是否存在间隙,齿轮齿条结构则注意两者之间的配合间隙。
解决方式:关键部分、受力大的结构螺丝一定用弹垫、螺丝或顶丝宜涂覆螺丝胶。电机轴与联轴器尽量用键槽连接。
可能原因④:滤波电容过大
问题分析:滤波电容过大,普通rc滤波器截止频率是1/2πrc,电容越大截止频率越小,一般驱动器脉冲端电阻为270欧姆,103陶瓷电容构成的rc滤波电路截止频率为54khz,频率高于此会因为幅值衰减过大而导致部分有效信号无法被驱动器正确检测到,终导致偏位。
解决方式:加滤波电容时需要核算脉冲频率、一定要保证大通过脉冲频率满足要求
可能原因⑤:plc或者运动控制卡大脉冲频率不够高
原因分析:一般plc允许输出大脉冲频率为100khz,运动控制卡根据其发脉冲芯片不一样差异较大,特别是普通开发的运动控制卡可能会因为脉冲频率不够高导致偏位。
解决方式:假如上位机大脉冲频率有限,为了保证速度,可以适当降低驱动器细分,以保证电机转速
是靠接收脉冲电流来实现速度、位置和方向的控制,脉冲的多少决定步进电机的位置,脉冲的速率决定电机的转速,脉冲的方向决定电机的转向。现在大多数步进电机的控制方式就是用发脉冲给驱动器,驱动器驱动电机运转。脉冲型方式已经存在了几十年,对于一些应用要求比较高的场合脉冲型已经不能满足需求,需要总线型来控制。
对于需要使用很多电机的场合,比如很多医疗器械都有二三十个轴,如果使用脉冲型一是不好控制,一个plc多也就可以控制六七个轴,电机一多就需要多个上位机,对空间体积要求比较大,而大多医疗器械体积就比较小巧紧凑,二是电机多了脉冲型布线很难,线路一多就存在信号干扰问题导致设备不稳定。如果使用总线型就只需要两根信号线和线把所有电机串联起来就搞定,设计和安装都非常方便,也不会存在大量布线的信号干扰问题。
有些机械上面自身就带有主机,如果使用脉冲型就不能发挥电脑主机的用处,还需要一个上位机或者运动控制卡来控制步进电机驱动系统,而使用总线型直接就可以通过电脑主机来控制,有运动控制卡方式的性能,成本和空间体积比起两种方式也很大优势。
有些产品在运动过程中需要力矩模式,比如锁螺丝机有些使用力矩模式,脉冲型是无法对电机电流做到控制从而调整力矩,而总线型就可以做到。
总线型方式相对于脉冲型不仅仅是体积上面小巧很多,控制程序的编写也会相对于plc梯形程序简单许多,还能做到电机电流、电压、温度、堵转等的时时反馈,电流、细分的时时改变,s形加减速、模拟量、同步指令、离线控制等的简单控制。总线型对于脉冲型来说有很多新的功能特点没有什么劣势,总线型是未来步进电机运动控制的发展方向和
伺服系统是的重要组成部分,数控机床的精度和速度指标等往往由伺服系统决定。伺服系统经历了从步进伺服到直流伺服进而到交流伺服的发展过程。随着技术的发展,高速高精度加工的直线驱动已成为伺服系统发展的新趋势。数控机床对伺服系统要求大概如下几点:
(1)稳定性好:稳定是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后到达新的或者回复到原有平衡状态。
(2)输出位置精度要高:伺服系统的精度是指输出量能跟随输入量的**程度。作为精密加工的数控机床,要求的定位精度或轮廓加工精度通常都比较高,允许的偏差一般都在0.01~0.00lmm之间。静态上要求定位精度和重复定位精度要高,即定位误差和重复定位误差要小(以保证尺寸精度)。动态上要求跟随精度高,即跟随误差要小,这是动态性能指标(以保证轮廓精度)。要求灵敏度高,有足够高的分辩率。
(3)快速响应性好,响应速度快且无超调:快速响应性是伺服系统动态品质的标志之一,即要求跟踪指令信号的响应要快,一方面要求过渡过程时间短,一般在200ms以内,甚至小于几十毫秒;另一方面,为满足超调要求,要求过渡过程的前沿陡,即上升率要大。这是对伺服系统动态性能的要求,即在无超调的前提下,执行部件的运动 速度的建立时间tp 应尽可能短。通常要求从0→fmax(fmax→0) 其时间应小200ms,且不能有超调,否则对机械部件不利,有害于加工质量。
(4).调速范围要宽且要有良好的稳定性(在调速范围内)调速范围:一般要求:稳定性是指输出速度的波动要少,尤其是在低速时的平稳性显得特别重要。
(5).负载特性要硬在系统负载范围内,当负载变化时,输出速度应基本不变。即△f尽可能小;当负载突变时,要求速度的恢复时间短且无振荡。即△t尽可能短;应有足够的过载能力。这是要求数控机床伺服系统有良好的静态与动态刚度。
(6).能可逆运行和频繁灵活启停。
(7).系统的可靠性高,维护使用方便,成本低。对伺服系统的要求包括静态和动态特性两方面;对高精度的数控机床,对其动态性能的要求更严。
严格来说,也属于的一种,伺服电机是特指可以**受控的电机(指转速、转角、行程可控等等),包括直流伺服电机、交流伺服电机、步进电机,但不严格时则多数指交/直流伺服电机。
与交直流伺服电机相比,步进电机大的特点是转角、转速均可方便的**控制,控制系统简单,它采用顺序脉冲驱动,依次序在定子间接入不同脉冲电流次序,导致步进电机的齿间磁力差距而拉动转子转动,控制脉冲的数量直接对应着转子的齿步数,不严格要求时,可以省略位置,停转后有自锁能力,控制起来比交直流电机容易得多,是常用的伺服电机,特别是在小功率、小体积的电控机械中居统治地位。
但步进电机大的缺点是转矩比较小、功率比较小(大也只是在kw级别),转动的平顺性也不算好,一般用于小型机电系统。
而交直流伺服电机的主要优点是功率大(可达数百kw)、转矩大、速度范围极高(可以极慢也可以极快),转矩顺滑、抖动小,一般用于大型、高性能数控系统,但交/直流伺服系统的控制都很复杂,都需要**的转角传感器或者位置传感器做闭环控制,算法复杂,成本高昂、体积庞大。
直流伺服电机一般采用电压控制,少数也可以采用电流控制,电压或电流与电机的转速之间存在着一定的函数关系,控制系统根据角度传感器反馈的信号,控制这个电机电压,后达到控制电机的转速或转角。
步进电机原理
步进电机作为控制用的特种电机,是将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的步进角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的,改变绕组的通电顺序,电机就会反转。
驱动器原理
步进电机需要使用专用的步进电机驱动器驱动,驱动器由脉冲发生控制单元、功率驱动单元、保护单元等组成。功率驱动单元将脉冲发生控制单元生成的脉冲放大,与步进电机直接耦合,属于步进电机与微控制器的功率接口。
控制指令单元,接收脉冲与方向信号,对应的脉冲发生控制单元对应生成一组相应相数的脉冲,经过功率驱动单元后送到步进电机,步进电机在对应方向上转过一个步距角。驱动器的脉冲给定方式决定了步进电机运行方式,如下:
(1)m相单m拍运行
(2)m相双m拍运行
(3)m相单、双m拍运行
(4)细分驱动,需要驱动器给出不同幅值的驱动信号
步进电机有一些重要的技术数据,如大静转矩、起动频率、运行频率等。一般来说步距角越小,电机大静转矩越大,则起动频率和运行频率越高,运行方式中强调了细分驱动技术,该方式提高了步进电机的转动力矩和分辨率,完全消除了电机的低频振荡。细分驱动器驱动性能优与其他类型驱动器。
伺服电机内部的转子是永磁铁,驱动器控制的u/v/w三相电形成电磁场,转子在此磁场的作用下转动,电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机原理
伺服又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类。
伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了闭环,系统就会知道发了多少脉冲给伺服电机,又收了多少脉冲回来,这样,就能够很**的控制电机的转动,从而实现**的定位。
在性能上比较,交流伺服电机要优于直流伺服电机,交流伺服电机采用正弦波控制,转矩脉动小,容量可以比较大。直流伺服电机采用梯形波控制,相对差一些。直流伺服电机中无刷伺服电机比有刷伺服电机要性能要好。
伺服电机驱动器
有刷直流伺服电机驱动器:电动机的工作原理和普通的直流电机完全相同,驱动器为三闭环结构,从内到外分别为电流环、速度环、位置环。电流环的输出控制电机的电枢电压,电流环的输入为速度环pid的输出,速度环的输入为位置环的pid输出,位置环的输入即是给定输入,控制原理图如上图。
无刷直流伺服电机驱动器:供电为直流,经过内部的三相逆变器逆变成u/v/w的交流电,供给电动机,驱动器同样采用三闭环控制结构(电流环、速度环、位置环),驱动控制原理同上。
交流伺服电机驱动器:大体可以划分为功能比较独立的功率板和控制板两个模块,控制板通过相应的算法输出pwm信号,作为驱动电路的驱动信号,来改逆变器的输出功率,以达到控制三相永磁式同步交流伺服电机的目的。
功率驱动单元通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦pwm电压型逆变器变频来驱动三相永磁式同步交流伺服电机,简单的说是ac-dc-ac的变流过程。
控制单元是整个交流伺服系统的核心,实现系统位置控制、速度控制、转矩和电流控制。
伺服电机与步进电机的性能比较
控制精度:步进电机的相数和拍数越多,它的**度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高;
低频特性:步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,在低速时也不会出现振动现象;
矩频特性:步进电机输出力矩随转速的升高而下降,高速时会急剧下降,伺服电机在额定转速内为恒力矩输出,在额定转速上为恒功率输出;
过载能力:步进电机不具备过载能力,伺服电机有较强的过载能力;
运行性能:步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠;
速度响应性能:步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。