西门子模块6ES7212-1BB23-0XB8质量保障
针对人工焊接机座角板出现的尺寸偏差、劳动强度高等弊端,采用伺服控制系统进行仿真设计专用夹具,可实现半自动化操作,有效提高了生产效率和产品质量,减轻了操作者的劳动强度。
机座角板焊接是一道重要的生产工序,其目的是将角板通过凸焊机焊接固定在机壳上,使电机得以安装在风扇总成的风罩上。机座角板的分布有三等分均布的,也有非三等分分布的(如下图)。传统的焊接方法是:操作者将机壳放入根据机座焊接高度定制的焊接夹具中,将角板放置在带有磁钢的夹具定位块内贴住机壳;将带有机座的焊接夹具置于凸焊机的焊接电极上;踩下脚踏开关,凸焊机焊接;手动旋转夹具到下一个角板焊接位置,重复步骤3,直至焊完所有角板;取下夹具,将焊好的机座取出,完成一次机座角板的焊接操作。
机座示意图
由于人工转动夹具,操作者在焊接时顶住夹具的作用力大小不同,会造成角板轴向定位存在误差。整个操作过程操作者要重复转动多次,致使操作者劳动强度较高。种种问题影响了产品质量和生产效率,我们设计了一套半自动角板焊接夹具来解决上述问题。
根据机座角板焊接工序的特点,需要能够按要求重复转动固定的角度,故我们采用了伺服电机来控制焊接时的转动角度。伺服电机带有信号反馈,精度高,并且能提供足够的转矩带动夹具的转动。使用单轴数控系统控制伺服驱动器,利用单轴数控系统的编程功能,我们编制出一套程序来模拟人工焊接时的动作顺序,实现了焊接自动化。为了保证焊接质量,我们设计了角板焊接座,用来安放夹具,实现分度转动、上下浮动、卸料等功能。从而较好地解决了半自动角板焊接夹具与凸焊机的接口,大化地利用了原有的设备。
系统硬件设计
1、系统组成
系统的组成以及运行流程。
2、角板焊接座
角板焊接座的作用是加载并转动工件,提供一个浮动平台,由伺服电机通过焊接座的齿轮副来控制转动角度。焊接座通过弹簧、导套和导柱能上下浮动,在转动时脱开内电极,焊接时压紧内电极,从而避免夹具转动时的擦碰,能有效提高焊接质量。与焊接座配套使用的是在原有手工焊接夹具基础上改进的夹具,它的作用是固定机壳和角板的相对位置。在焊接座上,我们采用带磁钢的吸盘来吸住焊接夹具,代替人工的手压动作,以保证焊接时夹具不致脱落,避免角板轴向尺寸偏差。为了卸料的需要,我们还在焊接座上安装了卸料机构,它通过两个气缸联接一个卸料环推动焊接夹具脱离带有磁钢的吸盘,完成卸料。
3、伺服系统
伺服电机具有转矩大、精度高、可反馈的特点,可根据脉冲数来控制转动角度和转速。我们选用了上海开通数控有限公司的110HM-8M04030-F伺服电机,它体积紧凑,转矩达到4N.m。
交流伺服驱动系统是控制伺服电机的装置,我们选用与电机相匹配的KT270全数字交流驱动系统。它采用DSP(数字信号处理器)芯片,加快了数据采集和处理速度,使电机运行性能良好。它能够直接在驱动器面板上设置参数、调试、监视系统状态,外观简洁,结构紧凑。
单轴数控系统KT700B在整个系统中相当于PLC的功能。它具有输入输出功能,自带液晶屏和键盘,可以直接在线编程控制和在线监控。通过它进行编程模拟人工操作步骤,可控制半自动角板焊接夹具。
4、电气系统和气动系统
主要用来控制输入和输出讯号,与凸焊机接口联接控制执行机构运行位置。
系统软件设计
1、系统参数设置
(1)交流伺服驱动器的设置
设置显示状态为监视运行状态;设置控制模式为位置控制模式,以控制伺服电机输出轴的位置;为了使转动更加平稳,设置适当的加减速时间;设置保护限制,比如高转速、高转矩等,以避免异常情况出现导致系统受损;建立工艺文件记录报警参数,及时了解系统的故障模式,采取应对措施。
(2)单轴控制器的设置
根据系统的试运行状况,调整各参数,使其运行稳定;设定系统参数,定义编程用常量、参考点;设置电子齿轮比,通过设置可以将夹具实际转动与脉冲数建立相应关系,便于控制;设定系统极值,确保系统稳定。
2、程序编写
程序编写是基于单轴控制器提供的数控指令编写的。指令采用顺序排列,根据人工操作时的顺序,编写程序。用SET指令接受输出信号,用WAT指令接受输入信号。SPEED指令控制速度,POS指令控制位置与角度。还可以采用CALL调用指令,循环执行相似的命令。
试运行发现的问题及解决方案
系统组建好后,进行试生产。运行过程符合设计要求,并按照人工焊接的顺序执行,定位准确。系统可根据实际生产要求,调整运行速度,满足生产节拍的要求。但在实际的操作中发现:夹具与焊接座的制造以及装配质量对系统的稳定可靠运行影响很大。我们对夹具进行了优化,并在装配时进行适当的调整。
起初,夹具易被压翘头,导致焊接后产品尺寸偏差大。我们在凸焊机上增加了预压装置,在焊接前先将焊接座压实,增加了护套以提高焊接座的刚度。运行一段时间后发现,工件难以脱离夹具。于是,我们重新修整夹具,调整凸焊机上电极的位置,使焊接时工件受力均匀,不会使工件偏移卡死夹具导致难以脱出。调整卸料气缸的压力以及卸料环与焊接座的间隙,使气缸顶出时更加顺畅。卸料气缸在卸料时,弹力很大,容易造成夹具弹出时使操作者受伤,损坏夹具。我们在工作台上设置了缓冲板,夹具在弹出后,先接触缓冲板减速,提高了系统的安全性。
经过一段时间的试运行,角板焊接夹具系统能够按照预定要求,完成整个工作任务。生产出的产品质量符合设计要求,并且避免了人为因素的干扰,降低了操作者的劳动强度。在焊接夹具工作时,操作者可以腾出手进行下一个工件的装配,提高了生产效率。结合伺服系统的应用,将机电一体化技术应用到实际生产中,能够给我们带来更多的便利,创造更大的经济效益。
喷气织机的引纬方式是用喷射出的压缩气流对纬纱进行牵引,将纬纱带过梭口,大特点是车速快、劳动生产率高,适用于平纹和纹路织物、细特高密织物和批量大的织物的生产,是无梭织机中先进,为成熟的产品。
喷气织机通过张力传感器检测经纱总张力,由 CPU控制由开口、松经、送经、经轴的卷径变化而发生的经纱张力变化,从而保证送经精度并使经纱保持恒定的张力。并采用电控送经机构,根据织机停台时间由计算机控制伸长,使织轴倒转。
由于喷气织机采用了微机技术以及其他电子技术,对全机的运动进行控制,尤其对产品质量的自动监控,使得喷气织机的生产效率大大提高,产品质量得到保障。织机上还安装了很多监控传感器,使得织机具有自动运行及程序控制的功能。
目前国产喷气织机电控系统都基本上要求具备了以下功能:
1、 电子卷取功能;
2、 电子送经:有单经轴、双经轴两种;
3、 储纬控制:4色自由选纬,主要的储纬方式有FDP和IRO定长型两种;
4、 引纬控制:多有4个主喷、4个剪切喷或辅助主喷嘴、18个辅喷、1个牵伸喷的高低压控制;
5、 电子多臂:16片电子多臂;
6、 织机的动作控制:正转、反转、快车、停车、正找纬、反找纬、急停、短纬、长纬、断经、绞边、废边断纱检测等的检测;
7、 门幅越来越宽,一般到360毫米,入纬率越来越高,一般到1800米/分钟;
由于国产纺织机械要求电气控制系统,性能高、稳定性好、维修方便、故障率低,好买回来就能用,用几年也不要保养维修,因为厂家基本没有的电气维修工程师;要求能适应高温高湿、多毛羽和粉尘,电源波动大,群机干扰大,连续24小时不间断长期工作,大部分厂条件一般都比较差;总之各种市场很大,要求很严格,但对价格控制更紧。
在OMRON喷气织机整体应用方案中(右图为OMRON喷气织机控制系统实物图),角度传感器采用了OMRON公司的E6B2-C型增量型光电编码器,可准确地给出织机任何定位角度,控制精度达1度。此编码器一路给PLC提供角度信号,一路给阀门控制板提供角度信号。
主控部分采用OMRON公司CP1H系列CP1H-XA40DT-D可编程序控制器,该PLC内置功能强大,具体功能及控制对象如下:
内置4轴高速计数功能(单相100kHz,相位差50kHz),接入旋编信号,在选用360P/R编码器,车速为1200转/分时,高速计数器输入脉冲频率为7.2KHZ,有很大余量。
CP1H内置8点中断输入功能,可捕捉宽度为50uS脉冲,响应频率为5kHz。当使用FDP储纬器时,FDP的FP信号及编码信号采用中断输入,当FDP高3000转/分时,频率为1.2KHZ,4个FDP用4路中断,完全达到要求。
CP1H内置4路模拟量输入2路模拟量输出功能,大分别率为1/12000,经纱张力信号通过内置的模拟量输入进PLC。2路模拟量输出可控制两只FDP驱动用的变频器,来调节FDP电机转速,控制纬纱张力。
CP1H还内置了4轴脉冲(100kHz)的定位功能。电子卷取和电子送经(双经轴)系统多是3轴伺服电机,配合采用OMRON公司的SMARTSTEPZ系列交流伺服电机可实现位置控制,卷取主动棍定位精度可达0.0001毫米,送经经轴定位精度可达0.0005°,足够满足织造要求。
通过CP1H内置的两个RS232C或RS485通讯口之一的RS485口和触摸屏通讯,适合于显示器和电箱分离式的环境,用一个RS232C口和阀门控制板通讯,满足快速控制的要求。
欧姆龙系统方案配置图
送经卷取系统采用OMRON公司的SMARTSTEPZ系列交流伺服电机,具有体积小,节省安装空间;设定方便,设定极其简单;完全自动调整,不会失调等优点。
储纬控制系统采用OMRON公司的3G3MZ变频器,该变频器搭载了自动调整功能的无传感器矢量控制,控制性和应答性有了很大的提高,内置的CE规格的噪音滤波器,不会对别的设备造成影响。外型新颖,接线方便。FDP的转速反馈用中断方式进PLC,根据设定选纬程序和每纬放纱圈数,并和车速连动,通过PID运算后,由PLC的模拟量输出到变频器,调节FDP电机的转速,控制纬纱张力,达到稳定放纱和储纱的要求。
喷气织机的显示器采用OMRON的5.7英寸16级灰度单色屏NT5Z或者NS系列8英寸彩屏通过其独有的SAP程序库、支持多达1000种配方以及多语言切换功能,与欧姆龙控制器与器件之间进行了简易化的连接和画面制作,大幅度节约了产品开发时间。
采用OMRON公司整体解决方案后,优化了喷气织机的工艺结构,使其控制核心更加简单、可靠、稳定,更增加了抗干扰能力,降低了故障率低。
目前作为发电厂和水电站厂房设备安装的前期吊运的主要设备是双梁桥式起重机。为吊运发电机定子(或转子)做准备,在前期安装吊运的散件和设备中,一般都在总重量的20%以下,每天工作的频率高,时间长。对发电机台数在2台以上的厂房在订购起重机时可选择2台单(或双)小车起重机(2台小车的起重量为定子或转子的总重量),在前期吊运中单机使用,当吊运发电机定子(或转子)时,2台并车抬吊,这样即加快了设备安装的速度和进程,又解决了单一起重机在安装期间的过负荷操作(设备安装期间起重机的接电持续率JC%一般在80%左右,设备安装完后起重机的接电持续率JC%一般在5%以下),不但保护了起重设备,减少了安装期间设备的故障率,提高了安装效率。为实现2机并车平稳抬吊的目的,我们引入了MPI网的技术,并在使用中获得了良好的效果。下面以王军春发电厂二期工程发电厂房所配的2台75t/20t桥式起重机为例介绍MPI网在双机抬吊中的应用。
1 电气配置和功能
本例中的2台75t/20t起重机电控系统的电气配置完全相同,均采用“MPI网+PLC+变频调速”控制方案。每台起重机分主起升机构、副起升机构、小车运行机构、大车运行机构。
4个机构均采用ABB变频器调速,其中起升机构采用ACC800变频器传动,ACC800是针对升降机设计开发的变频器,即当变频器内部检测功能检测到在零速时建立足够转矩(转矩达到额定转矩的150%~200%)后再打开抱闸的功能,这项功能主要是防止重物停在空中再起动时瞬间发生的溜钩现象而特设的。大小车运行机构采用ABB公司ACS800变频器传动。
其中主、副起升机构、小车运行机构采用闭环控制(即通过速度编码器的反馈纠正和提高变频器的输出精度,提高速度的稳定性)。大车运行机构一般采用开环控制就能满足要求(当然对大跨度要求较高的2台起重机并车抬吊还需考虑大车的闭环控制和增加大车的纠偏功能)。PLC采用西门子S7-300,其控制系统由CPU单元,开关量输入输出模块,模拟量输入输出模块等组成。开关量输入模块接受司机室的控制命令及各机构监控信号。开关量输出模块只将PLC程序对输入信号处理结果生成控制命令去控制各机构制动器,接触器,风机等的动作。PLC通过屏蔽通讯线(或通过PROFIBUS-DP总线方式)与各机构的变频器相连,实现PLC与变频装置间的通讯,PLC将获取变频器的运行状态及故障信息。所有的变频器接受PLC统一的控制与管理,对于调速性能的保证则完全取决于变频器本身的功能特性及多电机传动时装置间的合理配置,即系统设计。
2 并车抬吊方案
为了实现2台起重机的抬吊功能,2台起重机PLC系统之间采用MPI网络通讯方案。图1是2台起重机的并车图,当并车运行时,2大车好通过机械拉杆装置进行刚性连接,以保证2大车运行的速度同步。
图2是2台起重机电气系统通过MPI网的连接图。为了实现单人操作控制2台起重机的目的,可在司机室联动台上设置2个选择开关,一个作为选定哪台起重机为主车或副车;另一个开关则作为在主车上操作时选择的控制方式。如:选择“本车”、“并车”、“他车”控制,这样就可以在主车上或单独控制2台起重机的起升机构以及小车和大车运行机构,达到并车同步和单独调整使用的目的,并且2台起重机中的任意一台都可以设置为主车操作。
在起升卷筒高度限制器的轴上和小车被动轮上分别装有1个高分辩率编码器,分别进行高度与小车位置检测,其信号输入PLC系统。并车时,以主车为基准,副车起升高度与小车位置信号分别与主车进行比较,并根据位置信号差对其速度进行微调,实现位置随动以达到并车抬吊时起升及小车运行同步的目的。
并车运行时,电气连接为:将2台车的PLC的通讯线(通过CPU上的MPI接口)相连,实现2台车的PLC通讯,完成并车运行的所有操作功能。主车PLC在并车运行时执行并车程序。通过通讯即接受本车的所有控制及检测信号,又接受他车的所有控制及检测信号(副车各机构是否可以运行,方向限位是否动作等信号)。主副车PLC根据所获得的信息在主车上对2车输出控制命令,从而达到2台起重机所需的并车抬吊要求。
3 结束语
珲春发电厂二期工程发电厂房所配的2台75t/20t桥式起重机在MPI网的支持下成功地完成了双桥机抬吊发电机定子的任务。由于2大车之间采用了刚性连接,不但保证了2大车运行的速度同步,保护了连接2机的MPI网连线。当然若增加触摸屏或工控机来实现机构流程的动画显示效果会更好,对操作人员来说对机构工作进度和状态的跟踪将更加直观和方便。