西门子模块6ES7214-2AS23-0XB8质量保障
任务和目标
1980年,MIGROS计划在LACHAUX-DE-FONDS建设一个大型的区域购物中心,这座构思宏伟的建筑具有巨型的中央大厅,地下四层,地上6层,总有效面积超过40000M2,约200 000M3的封闭空间。经过四年的建设,于1993年春天开始营业。
LACHAUX-DE-FONDS位于靠近NEUCHAbbbD的山区,海拔1000M以上,冬天,天气非常寒冷,而夏天又很热。由于这个原因,故特别考虑到该建筑的供热和制冷的费用。原安装的控制器不能满足要求,MIGROS同COMMANDESA公司一道,共同寻找新的解决方案,该方案应使系统可靠运行,并且保证以较低的运行成本实现较高的舒适度,每周提供电和热能的消耗统计,记录所有重要设备组的运行时间,能源消耗必须显著降低。
系统改造必须在不中断营业的情况下进行,时间从1998年到99年。
系统实现
COMMANDESA公司决定使用开放型控制系统SAIADDC-PLUS。他们的选择是受如下事实所影响:用该系统,通用的模拟量模块能够继续与以前安装的传感器和执行器一起使用。
45台PCD2控制器中,每一台控制建筑物内的一个HEAVAC区,并通过SAIAS-BUS与COVISION2.1楼宇管理系统互连,在这里,服务工程师可以访问存储在PCD控制器内的所有数据,如果需要,可优化这些数据。安装了四个远程触摸屏作本地监控和必要的维护操作。
如图示,功能庞大,却只须使用原控制柜不到一半的空间,余下的空间保留作未来开发用(如灯光控制)。目前灯光控制由一个系统控制。SAIADDC-PLUS,具有合适的MODBUS驱动器,这提供了集成灯光控制系统到新系中的可能性,并且可进行优化控制。
通过回收冷藏间制冷压缩机产生的废热,SAIADDC-PLUS现在可以在供热期间来使用这些余热,从而达到节能的目的。
主要优点
对供热和制冷温度作高精度调节,为顾客和售货员提供了舒适的购物环境。
到2000年底之前,通过密切观测设定值,划分HEAVAC区域和冷藏压缩机热量回收等方式,使能量消耗显著降低。由于采用了新型控制器,使得原控制柜内的器件大大减少,布线简洁美观,易于维护,富余的空间为以后的扩展带来便利。
由于SAIA DDCPLUS有开放的MODBUS驱动器,有机会以后在控制系统内集成照明控制功能,并实现优化控制。
COVISION2.1楼宇管理系统和触摸屏终端使系统服务人员更近地贴进实际过程。由于SAIAPCD控制器卓越的可靠性,自安装完成后没有出现任何控制技术问题。
SAIADDC-PLUS良好的性价比在本项目中被证明。
技术信息
带中央大厅,地下四层,地上六层的大型建筑,有效使用面积超过40000M2和约200 000M3的封闭空间。
1993年试运行,由于原楼宇控制系统的运行质量存在不足,于1998年用SAIADDC-PLUS作系统升级。
45台SAIAPCD2子站通过SAIAS-BUS网络连接,不仅控制HEAVAC设备,也监测地下停车场的一氧化碳的浓度,并采取各种方式减少能源消耗,如压缩机的热能回收。
总I/O点数1568,由703个开关输入和407开关输出加上264模拟量输入及194模拟量输出组成。
安装了四个远程触摸屏用于本地监控。
通过PCD2 的MASTERGATEWAY,整个网络用bbbbbbS 95 下的COVISION2.1楼宇管理系统连接,当发生情况时,通过SMS消息直接通知在外工作的维护工程师。
前言
超级压光纸简称SC纸,以价格低廉的磨木浆、化学机械浆或废纸脱墨浆以及麦草浆为主要原料,配以少量的长纤维化学浆,并添加30%以上的填料制成,其平滑度达500S以上,不透明度达85%以上,裂断长纵横平均达3000m以上,其质量可和低定量涂布纸比美,可用作广告、目录、插页等彩色印刷。由于该工艺使用大量填料和高得率的磨木浆或化机浆,可节省纤维和木材资源,可大大降低成本。纸页经压光机压光后,可以**纸页的平滑度、光泽度和紧度,使纸页全幅厚度一致,从而改善纸张的外观质量,并减少透气度。图一所示的超级压光机主要分为放卷装置(又称退纸器)、压光辊装置(含主电机)和收卷装置等。原纸从放卷装置处经引纸辊依次通过各纸粕辊和冷铸辊后进入中心收卷。本文论述的就是如何采用变频控制来完成超级压光机的传动控制。
2、超级压光机的变频控制
2.1开环的张力控制方案
超级压光机在快速启停及中间连续调速过程中必须保证纸页的张力恒定,否则收取的纸页就会卷曲、折页甚至断裂,严重影响产品的质量和产量。本系统中利用变频器的组合来达到**的张力控制,我们知道一般情况下可以通过两种方式可以满足这样的要求:一是通过控制电机的速度来实现,二是通过控制电机的转矩来实现。由于考虑到安装张力传感器的成本和条件,故采用开环的张力控制来实现。当然在这种控制方式下,从而降低了系统的成本和难度。
由设定的张力和卷筒的卷径可以计算出变频器的转矩指令,其公式如下:
T=(F X D) / (2 Xi )
其中:T为变频器的输出转矩指令;F为张力设定指令;D为卷筒的卷径;i为机械传动比。
本方案必须考虑到线速度检测信号、卷径计算和张力锥度控制,这样才能准确地控制电机的转矩输出,保持张力的恒定。
2.2超级压光机的变频组构
超级压光机的主传动功率的计算可以根据以下:
P = K x B x V xN
其中:P为电动机功率(KW);K为常系数,一般取*5~0.026;B为幅宽;V为工作车速(M/min);N为辊数(根)。
以四川某造纸厂为例,采用十二辊超级压光机,收卷的纸张宽1M,厚10um,设计车速为250米/分。则选用的主牵引电机(变频器)功率为:P= *8 X 1 X 250 X 12 =54KW,可以选用55KW的变频器。本系统采用高性能的矢量变频器TD3000,配置如下:主牵引变频器:
TD3000-4T0550G、收卷变频器:TD3300-4T0055G。收卷电机采用变频电机,并加装旋转
编码器(欧姆龙、1024线输出)
2.3变频调速控制描述
本系统用TD3000矢量开环控制来驱动主传动电机,收卷变频器TD3300采用开环张力控制模式。主牵引的速度给定从AI1输入,控制精度达1%~0.5%。TD3300采用前级主牵引变频器TD3000的模拟输出口AO2(输出TD3000变频器的运行频率)来得到线速度,并进行卷径计算;张力设定信号由AI1获取;旋转编码器的信号分别接到PGP/COM/A-/B-口。
3、超级压光机收卷变频器的调试步骤
3.1初步检查变频器、电机、旋转编码器的接线及铭牌参数。
电机铭牌:额定功率5.5kw,额定电压380V,额定频率50Hz,额定电流11.6A,额定转速1440RPM。
旋转编码器:欧姆龙1024线输出,供电电压24VDC,A\B\Z开路集电极输出。
3.2完成变频器电机参数自辨识
重点检查变频器辨识出的电机的空载电流,电机空载电流正常应在电机额定电流的30%~50%范围内。TD3300变频器实际辨识出电机的空载电流为4.9A,是电机额定电流的42%,在正常范围之内。
3.3初步测试变频器对电机的驱动能力
TD3000变频器设置为开环矢量控制模式,TD3300设置为闭环矢量控制模式,TD3300变频器应在(FB编码器功能项)设置编码器的参数(FB.00=1024),在键盘控制模式测试变频器对电机的驱动能力,重点观测变频器的输出频率的稳定性和输出电流的大小,特别关注TD3300变频器的输出电流,若在空载的情况下,输出电流偏大并且报过流故障,应该是旋转编码器的A\B相接线有误,更换A\B相接线或更改变频器内PG接线的方向设定(功能码FB.01)。
3.4完成TD3000和TD3300的信号接口测试
完成TD3000变频器模拟输出口AO2(F6.07=1)和TD3300变频器模拟输入口AI2(F6.01=0,F6.04=1.0)的相关参数设置,检查TD3300变频器接口板AI2上V/I端口的跳线在I侧,并校正TD3000模拟输出口AO2的输出和对应的TD3300模拟输入口AI2的线性度(临时修改TD3000变频器AO2口(F6.07=0)为设定频率输出,设定F3.03=0,通过修改F3.04的值可改变AO2口的输出值。利用TD3300键盘停机时可显示AI2的输入电压值-设定FD.02=1024,在TD3000和TD3300上电不运行的情况下,修改TD3000变频器F6.10-AO2零偏调整和F6.11-AO2增益设定,可完成其线性度的校正)。
3.5设置TD3000和TD3300变频器的其他相关运行参数,初步带载试运行。
F3.06=3,开环张力控制模式;
F1.00=2.81,设备厂家提供的收卷电机与收卷卷轴的转速比;
F5.03(多功能端子X3)=12,卷径复位1指令;
F8.00=0,收卷模式;
F8.01=1,AI1设定;
F8.03=1000,根据现场调试情况修改,满足张力设定电位器的调整要求;
F8.08=0,初步设定卷径不计算,保证初步测试时张力的稳定;
F8.09=500,设备厂家提供,建议比厂家提供的数值稍大一些;
F8.10=170,设备厂家提供,空芯卷轴的直径;
F8.12=170,卷径复位用,与F5.03(多功能端子X3)=12,卷径复位1指令配合使用;
F8.16=170,TD3300变频器初步启动时计算变频器输出转矩用;
F8.17=0,正向,由于收卷电机处于电动状态,力矩输出应与转速方向一致,即正向。
参数设置后设备运行较好,客户反映随着卷径的增加,张力越来越小,这是卷径未计算的结果。
3.6加卷径计算功能,带载运行
F8.08=1,设定卷径来源选择线速度计算法;
FC.00=2,AI2设定,来自主牵引变频器TD3000的AO2(运行频率)口的输出。
FC.03=250m/min,设备厂家提供,FC.00*FC.03=当前线速度V,变频器根据公式:D=(i*V)/(л*n)计算当前卷径;
FC.04=80m/min,防止TD3300变频器在速度较低时卷径计算不准导致变频器输出力矩的波动;当TD3300变频器运行的线速度低于FC.04设定值时,卷径计算功能停止,保持当前卷径值;当TD3300变频器运行的线速度大于FC.04设定值时,卷径计算功能重新使能。
带载测试,收卷过程张力平稳,达到要求。但客户反映TD3300刚启动时力矩突加较猛,纸张容易拉断,修改F3.12功能项,使TD3300变频器启动时转矩斜坡方式产生,减缓启动时的力矩突变,至此完全满足客户的工艺要求。
(注:此系统由于设备惯量较小,全过程张力恒定,未使用惯量补功能偿和张力锥度控制功能)
4、结束语
本系统采用TD3000+TD3300的变频收卷方案后,现场配置简洁,工作稳定,调试方便。实际的收卷效果非常理想,端面整齐,张力稳定。正是基于变频器TD3300的张力控制特点,加上其完善的功能、高可靠性和的性能价格比,满足了用户对于纺织、造纸、冶金等各个领域的不同要求。
集中供热因具有节约能源和改善城市环境等方面的积极作用,而日益成为城市公用事业的一个重要组成部分。着眼于青岛市向现代化国际大都市的发展,华电青岛发电有限公司在市委、市政府及集团公司的支持下,积极开展热电联产项目,满足了青岛市集中供热布局的大调整、大发展,及2008年奥运会青岛赛区的要求。也使整个青岛市区大气环境质量和市民生活品质得到了大幅度的**。
作为集中供热系统的主要组成部分——换热首站,是热源输出的重要关口。2004年10月在华电青岛发电有限公司建成了青岛市市内大的无人值守换热首站,供热面积达70万平方米,成为了青岛市自动化程度及投入率高的换热首站之一。
2换热首站自控系统的设计要求
该换热首站主要由三台汽水换热器组成的换热系统、四台循环水泵组成的循环水系统及两台补水泵组成的补水系统来构成。根据生产工艺设计要求,换热首站的自控系统采用典型的两级监控方式。上位机以标准的工业控制计算机(IPC)作为主要的人机界面(HMI),为生产管理级,完成对下位机的监控、生产操作管理等,主要面向操作人员;下位机由可编程控制器(PLC)构成,为基础测控级,完成生产现场的数据采集及过程控制等,面向生产过程。
(1)在生产过程中,存在大量的物理量,如压力、温度、**等模拟量参数。需要通过PLC对这些参数进行实时采集和处理。
(2)换热首站的自动控制,即实现整个进汽和供水过程的全自动控制,进行故障诊断,并在监控画面上显示各工况参数并控制设备运行状态。
(3)根据本地的气候条件以及供热对象的特性,给出一条室外温度与二次供水温度之间的对应曲线。控制器可以通过这条曲线根据室外温度传感器测量的室外温度对一次供汽**进行控制,已达到对二次供水温度的控制。此设计的特点在于能够通过室外温度对二次供水的温度进行控制,以达到节省能源,**供热质量的目的。在控制器中增加晚间节能的设置,根据需要设置晚间供热温度。
(4)自控系统通过加入时间日程表的控制,实现当中不刻对应不同的温度。
(5)通过采用西门子的压力传感器、控制器以及变频器来实现对二次供水压力的控制,由于控制器可编程的灵活性,可以实现变频器的低频限制,以避免变频器、水泵长时间在低频运行,从而保护电机及变频器。当一台补水泵无法通过变频补水达到所要求的压力时,控制器可使另一台备用泵以工频的方式进行补水。终实现更加智能化的恒压补水控制。
(6)对调节系统可采用手操器控制,确保进汽和供水的温度、压力准确稳定,使换热温度达到用户的要求,并对其故障实现实时报警和连锁启停切换控制。以1#换热器为例,具体调节控制单元如下:
①1#换热器二次供水温度调节控制回路
主要功能:通过控制1#换热器一次蒸汽管网入口蒸汽调节阀CV-101A实现1#换热器二次侧热水出口温度的自动控制。
控制回路名称 :TIC-101A
过程变量 :TI-202A(1#换热器二次供水温度)
控制输出 :CV-101A(1#换热器一次蒸汽调节阀调节信号)
②1#换热器冷凝水水位调节控制回路
主要功能:通过控制1#换热器冷凝水排水调节阀CV-301A实现1#换热器冷凝水水位的自动控制。
控制回路名称 :LIC-301A
过程变量 :LI-301A(,1#换热器冷凝水水位)
控制输出 :CV-301A(1#换热器冷凝水排水调节阀调节信号)
③补水**调节控制回路
主要功能:通过控制补水**调节阀CV-302实现二次回水压力的定压自动控制。
控制回路名称 :FIC-302
过程变量 :PI-204(次回水压力/泵入口)
控制输出 :CV-302(二次回水补水**调节阀调节信号)
④二次供水压力调节控制回路
主要功能:通过控制循环水泵变频器转速实现二次供水压力的定压自动控制。
控制特性:
变频器小转速为额定转速的20%(10Hz)。
控制偏差为±0.625%(±*MPa)
待系统运行稳定后将1#/2#补水泵调节回路设为自动控制。
控制回路名称 :BPQ2
过程变量 :PI-203(二次供水压力/换热器出口总管)
控制输出 :2BPQ-F(1#/2#循环水泵变频器转速调节信号)
⑤二次回水压力自动控制回路
主要功能:通过控制疏水水泵变频器转速实现二次回水压力自动定压控制。
控制特性:
当二次回水压力低于0.46MPa时自动启动变频器对系统进行补水,当压力达到额定值时变频器稳定在某转速恒定运行,系统稳定后可手动停止变频器运行。
为避免变频器在达到额定压力时出现转速波动的情况,控制死区宽度设置为1.6×±0.625%=±*MPa,即当测量压力与设定压力出现±*MPa误差时,变频器转速恒定不变。
变频器小转速为额定转速的20%(10Hz)。
待系统运行稳定后将1#/2#补水泵调节回路设为自动控制。
控制回路名称 :BPQ1
过程变量 :PI-204(二次回水压力/滤污器出口)
控制输出 :1BPQ-F(1#/2#疏水泵变频器转速调节信号)
(7)该换热首站监控系统共需处理72个数字量输入点、64个数字量输出点、48个模拟量输入点和10个模拟量输出点。
(8)可使运行操作人员通过上位机中的视频窗口实时监控现场设备运行状况。
按照上述设计要求,整个换热首站自控系统可具有良好的自适应能力,完全可以实现无人值守、高效节能的设计目标。
3系统选型及特点
为了满足上面提到的换热首站自控系统的设计要求,我们选用西门子公司SIMATICS7-300可编程控制器(PLC)和研华公司IPC-610工控机(IPC)构成的自控系统,再配以先进的WinCC监控软件,来实现换热首站自控系统的各项功能。
当前可编程控制器(PLC)是专为工业环境下应用而设计的工业控制计算机,已经成为电气控制系统中应用为广泛的核心位置,它不仅能实现复杂的逻辑控制,还能完成各种顺序或定时的闭环控制功能,并且抗干扰能力强、可靠性高、稳定性好、体积小,能在恶劣环境下长时间、不间断运行,且编程简单,维护方便,并配有各类通讯接口与模块处理,可方便各级连接。
S7-300采用模块化结构、适合密集安装,模块化结构设计使得各种单独的模块之间可进行广泛组合以用于扩展。在一块机架底板上可安装电源、CPU、I/O模板、通信处理器CP等模块,并且可以通过接口模块实现多个机架的扩展工作方式。根据要求本系统所选用的硬件产品,如下所示:
(1)工业控制计算机(IPC)
ADVANTECHIPC-610,Pentium Ⅳ 2.8GHz处理器,512M内
存,80G硬盘;
(2)中央处理单元(CPU)
CPU314,24V供电,48KB工作内存,DI/DO大1024点,
AI/AO大256点;
(3)信号模块(SM)
SM321,数字量输入模块3块;
SM322,数字量输出模块2块;
SM331,模拟量输入模块6块;
SM332,模拟量输出模块2块;
(4)通讯处理器(CP)
RS485中继器2块;
(5)负载电源模块(PS)
PS370,电源模块1块。
(6)接口模块(IM)
IM365,接口模块2块。
网络拓扑结构图如下:
4软件组态过程与效果
工控组态软件WinCC(bbbbbbs ControlCenter)是一个集成的人机界面(HMI)和监控管理系统,它是西门子公司在过程自动化领域中的先进技术和微软公司强大软件功能相结合的产物,是世界上个集成的人机界面(HMI)软件系统。它真实的将工厂控制软件集成到自动化过程中。HMI人机界面系统作为基础自动化系统重要组成部分,用于控制系统的各种数据的设定、显示、故障报警,以及相应操作和设备的在线调试及维护,发挥越来越重要的作用。换热首站HMI系统信息以友好方式与用户交互。通过自动化控制系统接收过程计算机(PCS)和操作人员通过HMI输入的数据进行处理,处理后再将过程数据信息、机组状态信息和各种测量值以符号、数值、曲线、图表及历史记录的形式在HMI画面上显示。终实现了在HMI操作站(上位机)上以少的设备数量提供大可能的信息,帮助操作人员和设备维护人员快速准确的了解系统当前状态及其相关信息的设计目标。
在上位机上用WinCC软件设计了标准的人机界面,主要包括以下几个方面的内容:
(1)工艺流程图:在画面中通过编程实现模拟显示整个换热站现场进汽供水的全过程,并且在换热器本体上实时显示了各路汽、水的温度与压力,以便于操作者能及时准确的掌握本体内的换热情况,能够对现场设备的故障进行实时诊断。
(2)手操器的操作与对现场仪表的监控:手操器有手动和自动两种工作方式,在设备安装调试阶段一般用手动操作方式,进入正常运作时常用自动方式,以实现对一些重要的模拟量数据的**控制,自动调节程序由PID闭环控制回路完成。
(3)报警记录:对于如进汽**、供水压力等一些重要的模拟量输入参数进行实时报警,当处于监控下的任何一个变量超出预先设定的安全值时,报警灯就会立即闪烁,通过报警一览表对话框可以检查报警超出的范围以及错误的出处,并对此采取相应的措施。
(4)历史趋势:在此画面中除了实时显示变量的变化趋势,操作员还可以检查过去的过程数据记录,通过对过去历史趋势的比较进而可以对变量未来的发展趋势做的预测。还具有报警或变量记录档案库数据的运行报表。
(5)摄像监控:通过摄像及图像采集设备对图像的处理,使操作人员通过视频窗口实时监控现场设备运行状况